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ABSTRACT

The accurate and efficient transfer of genetic information into amino acid sequences is carried out through codon–anticodon
interactions between mRNA and tRNA, respectively. In this way, tRNAs function at the interface between gene expression and
protein synthesis. Whether tRNA levels are dynamically regulated and to what degree tRNA abundance influences the cellular
proteome remains largely unexplored. Here we profile tRNA, transcript and protein levels in Drosophila Kc167 cells, a
plasmatocyte cell line that, upon treatment with 20-hydroxyecdysone, differentiates into macrophages. We find that high
abundance tRNAs associate with codons that are overrepresented in the Kc167 cell proteome, whereas tRNAs that are in low
supply associate with codons that are underrepresented. Ecdysone-induced differentiation of Kc167 cells leads to changes in
mRNA codon usage in a manner consistent with the developmental progression of the cell. At both early and late time points,
ecdysone treatment concomitantly increases the abundance of tRNAThr(CGU), which decodes a differentiation-associated
codon that becomes enriched in the macrophage proteome. These results together suggest that tRNA levels may provide a
meaningful regulatory mechanism for defining the cellular proteomic landscape.
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INTRODUCTION

By surveying tRNA gene copy numbers across several model
organisms, studies have shown that the frequency of codon
usage positively correlates with the relative abundance for
most tRNA species (Percudani et al. 1997; Kanaya et al.
1999; Qian et al. 2012). Highly expressed genes are often en-
riched for optimal, high-frequency codons (Duret 2002;
Goetz and Fuglsang 2005), and optimization of codon usage
in a particular transcript can significantly alter the level of
protein expression (Gustafsson et al. 2004), suggesting that
cellular concentrations of tRNAs may influence the rate of
translation. Although a relationship between tRNA abun-
dance and translational efficiency has been generally accepted
(Novoa and Ribas de Pouplana 2012), recent ribosome pro-
filing studies do not capture increased ribosomal pausing at
rare codons (Ingolia et al. 2011), leading to a renewed debate
over this general assumption. A recent alternative hypothesis
argues that if aminoacylated tRNAs are in short supply to
translating ribosomes, the concentration for each tRNA
isoacceptor would become equal when tRNA abundance is
balanced with codon usage (Qian et al. 2012), providing a

possible explanation for the uniformity in ribosome occu-
pancy while accounting for the importance of tRNA abun-
dance in translation efficiency.
The observation that tRNA levels are finely tuned with co-

don usage across diverse organisms strongly suggests that
tRNA abundance plays an important role in optimizing the
translational output of the cell. Taking the next step, it is
conceivable that within an organism, different cell types
may express a unique codon usage that would require dynam-
ic regulation of the tRNA pool. The increasing demand
for one codon, for example, would benefit by increasing the
relative abundance of the cognate tRNA. A recent survey
of tRNA abundance and codon usage across numerous pro-
liferative and differentiated cell types indeed suggests that
tRNA levels are dynamically tuned toward codon usage
(Gingold et al. 2014). RNA expression analysis shows that
proliferative cancer cell lines and cells overexpressing the tran-
scription factor Myc tend to possess a unique codon bias
compared with differentiated cells or those with induced sen-
escence. Accordingly, tRNA abundance in differentiated cells
is better matched for differentiated codon bias, and vice versa.
However, to what degree tRNA expression is modulated in a
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single cell type in response to differentiation, and whether or
not changes in tRNA abundance produce differences in
translational output, remains unsettled.

Here we integrate profiles for tRNA, transcript, and pro-
tein levels, and demonstrate that high abundance tRNAs as-
sociate with codons that are overrepresented in the proteome
of Drosophila melanogaster, providing evidence in support of
the translational efficiency hypothesis. Induction of steroid-
hormone signaling in Kc167 cells, a plasmatocyte cell line
characterized for its robust and temporal-specific response
to 20-hydroxyecdysone (ecdysone, 20HE), leads to cellular
differentiation into macrophages. This is accompanied by
changes in codon usage that mirror the differentiation status
of the cell. By profiling the transcriptional, small RNA, and
proteomic responses to ecdysone at both early and late
time points, we identify changes in proteomic codon repre-
sentation that mirror earlier changes in transcript and
tRNA levels. Specifically, we find that tRNAThr(CGU), which
decodes a codon enriched in differentiation genes, increases
in response to 20HE at both early and late time points, cor-
relating with an increase in proteomic codon representation.
Ecdysone also increases the levels of three tRNAs that decode
differentiation-associated codons, and decreases the level of
one tRNA decoding a proliferation-associated codon. These
results suggest that tRNA abundance may represent an im-
portant regulatory mechanism for shaping the proteome of
a cell, and that variation in tRNA levels between cell types
and individuals may underlie proteomic diversity across
populations.

RESULTS

Estimation of tRNA abundance in Drosophila
Kc167 cells

To characterize the relationship between tRNA levels, tran-
script codon usage, and proteomic output, we carried out
an integrated analysis of transcript and protein levels in
Drosophila Kc167 cells. For analysis of small RNAs, which in-
clude low molecular weight noncoding RNAs such as micro
RNAs (miRNA), small nucleolar RNAs (snoRNA), ribosom-
al RNAs (rRNA), and transfer RNAs (tRNA), we enriched for
RNA species <200 nucleotides (nt) long (Supplemental Fig.
S1) and constructed indexed libraries for multiplex RNA
sequencing (RNA-seq). RNA-seq reads were mapped to the
release 6 reference sequence of the Drosophila melanogaster
genome (Hoskins et al. 2015), and the relative abundance
for each tRNA and miRNA was determined by the enrich-
ment of sequencing reads mapping to each annotated region.

With respect to tRNA genes, 44 tRNA types, including the
selenocysteine isoacceptor, are currently annotated inD. mel-
anogaster and were considered in our analyses. Comparison
of tRNA gene copy number with the abundance of tRNAs
in Drosophila Kc167 cells, as determined by small RNA-seq,
demonstrates a strong relationship between tRNA levels

and the number of gene copies for those currently annotated
(Fig. 1A, P = 8.1 × 10−6, Spearman’s rank correlation).
Previous comparisons between codon usage and tRNA levels

FIGURE 1. Estimation of tRNA abundance in Drosophila Kc167 cells.
(A) Correlation plot for tRNA levels (log10 tRNA abundance, as mea-
sured by small RNA-seq experiments; y-axis) with tRNA gene copy
number (x-axis). ρ = 0.635; Spearman’s rank correlation, P = 8.1 ×
10−6. (B) Correlation plot for tRNA abundance (y-axis) with codon us-
age weighed by transcript level (x-axis). ρ = 0.656; Spearman’s rank cor-
relation, P = 3.2 × 10−6. (C) Analogous correlation plot for tRNA gene
copy number (y-axis) with codon usage weighed by transcript level
(x-axis). ρ = 0.534; Spearman’s rank correlation, P = 3.1 × 10−4.
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relied on organismal tRNA gene copy number as a proxy for
tRNA abundance, and these results support this generalized
relationship.
We next asked whether tRNA levels are finely tuned to-

ward codon usage, defined as the frequency in which a par-
ticular codon is used with respect to all codons. For most
organisms, codon usage is determined using the annotated
coding sequence within the genome. Though this approach
is necessary where the levels of individual transcripts have
not been measured, accurate estimation of codon usage
must take into consideration the relative number of copies
for each messenger RNA (mRNA) within any given cell.
Therefore, to accurately quantify codon usage in Drosophila
Kc167 cells, we counted the number of occurrences for
each specific codon triplet in the transcriptome, and correct-
ed for the relative abundance of each transcript (Supplemen-
tal Fig. S2). Comparison of genomic and transcriptomic
codon usage reveals that, overall, the representation frequen-
cy of each codon is similar in either case (Supplemental Fig.
S3). However, differences in codon usage have been discov-
ered in studies comparing proliferative and differentiated tis-
sues (Gingold et al. 2014), and small changes in transcription
may have significant effects on codon usage.
We find that the frequency of codon usage specific to

Kc167 cells correlates significantly with the abundance of
tRNAs measured by RNA-seq (Fig. 1B, P = 3.2 × 10−6,
Spearman’s rank correlation). The frequency of codon usage
also shows a significant, albeit weaker, correlation with tRNA
gene copy number (Fig. 1C, P = 3.1 × 10−4, Spearman’s rank
correlation), suggesting that while tRNA gene copy numbers
may generally correlate with genomic codon usage in
Drosophila, the relative abundance of each tRNA species is
more finely tuned to the frequency of codon usage specific
to Kc167 cells. Together, these results validate the estimation
of tRNA abundance by small RNA-seq and suggest that tRNA
levels may be tightly regulated to match the codon represen-
tation of a particular cell type. Given the wide range in relative
abundance across tRNA molecules, we next asked whether
tRNA levels might also influence the proteomic signature
of Kc167 cells, potentially by increasing the translational ef-
ficiency for codons paired with high abundance tRNA types.

tRNA abundance scales with biased codon
representation in the Drosophila proteome

To compare tRNA abundance with proteomic codon repre-
sentation, we integrated the small RNA-seq analysis with
protein quantification experiments performed on matched
cellular lysates (Fig. 2A). We used label-free quantitative
mass spectrometry to determine the level of each protein pre-
sent in Kc167 cells. We then calculated codon representation
in the proteome by taking into consideration the number of
occurrences for each codon triplet in the translated proteome
weighed by the relative abundance for each polypeptide
(Supplemental Fig. S2). Comparison of codon usage in the

transcriptome with codon representation in the proteome
reveals a significant correlation (Fig. 2B, P < 2.2 × 10−16,
Spearman’s rank correlation), as one might expect if the pro-
teome is in large part influenced by the relative abundance
of mRNAs. However, we find that specific codon triplets
are observed in the proteomemore or less frequently than ex-
pected based simply on transcript codon usage (Fig. 2C). For
example, codons AAG (lysine) and GAG (glutamic acid) are
counted far more frequently, and codons UGU (cysteine) and
AUA (isoleucine) far less frequently in the proteome than
their respective codon usage frequencies in the transcrip-
tome. Instead, we find that tRNA abundance is a strong pre-
dictor of biased codon representation in the proteomic data
(Fig. 2D, P = 6.9 × 10−6, Spearman’s rank correlation). For
example, in agreement with the abundance of the respective
codons in the proteome, tRNALys(CUU) and tRNAGlu(CUC) are
two of the most abundant tRNAs in Kc167 cells, whereas
tRNACys(ACA) and tRNAIle(UAU) are two of the least abundant.
More generally, we find that all codons with increased repre-
sentation in the proteome correlate with tRNAs that are, on
average, significantly more abundant, and vice versa (Fig.
2E, P = 5.9 × 10−4, Wilcoxon rank sum test). Furthermore,
although we do observe a general relationship between tran-
script codon usage and biased codon representation, we find
examples in which high abundance tRNAs increase pro-
teomic codon representation despite low transcript codon
usage (e.g., tRNAArg(ACG), Fig. 2C,D). The observed relation-
ship between tRNA levels and over- or underrepresentation
of cognate codons in the proteome suggests that tRNA abun-
dance may influence the translational flow from transcript to
protein.

Transcriptional and proteomic response to steroid-
hormone signaling in Kc167 cells

We next asked whether codon usage and tRNA abundance
are significantly altered in response to changes in transcrip-
tion. In Drosophila, Kc167 cells provide a powerful system
for assaying the effects of steroid-hormone signaling, as
20-hydroxyecdysone induces robust morphological changes
and transcriptional dynamics that are broken into tempo-
ral-specific early and late responses (Li and White 2003;
Gauhar et al. 2009). We therefore profiled small RNA,
mRNA, and protein levels throughout the ecdysone response
(Fig. 2A). Specifically, small RNA-seq was conducted at 0 h,
3 h (early response), and 48 h (late response) after treatment
with ecdysone, and protein levels determined by label-free
quantitative mass spectrometry at 0 and 48 h. We have pre-
viously characterized the mRNA dynamics at 0, 3, and 48 h
that we consider here in our analysis (Wood et al. 2011).
Transcriptional profiling studies suggest that Drosophila
Kc167 cells are plasmatocytes (Cherbas et al. 2011), a subclass
of hemocytes involved in immune surveillance that may
further differentiate into lamellocytes, podocytes, or macro-
phages (Stofanko et al. 2010). To examine whether ecdysone
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treatment has an effect on the differentiation state of Kc167
cells, we analyzed expression markers for these relevant cell
types at 0, 3, and 48 h. Up-regulation of Croquemort, a mac-
rophage receptor for apoptotic cells (Franc et al. 1996, 1999),
Singed (Fascin), an actin-bundling protein important for
macrophage migration (Zanet et al. 2012), and Schnurri, pre-
viously shown to regulate hemocyte-to-macrophage differen-
tiation (Kelsey et al. 2012), together suggest that ecdysone
induces plasmatocyte-to-macrophage differentiation in this
cell line (Fig. 3A).

Label-free quantitative mass spectrometry on cellular ly-
sates at 0 and 48 h identifies 276 proteins significantly in-
creasing and 129 proteins decreasing after treatment with
ecdysone (FDR = 5.2%, Supplemental Fig. S4). We find that
changes in protein levels agree well with the concomitant

transcriptional dynamics after 48 h, suggesting that changes
in transcript levels directly influence protein abundance
(Fig. 3B, P < 2.2 × 10−16, Spearman’s rank correlation).
Small RNA-seq analysis reveals several miRNAs that signifi-
cantly increase or decrease in response to 20-HE. The Let-7
cluster, for example, includes three highly conserved develop-
mental miRNAs known to be up-regulated specifically during
the late ecdysone response (Bashirullah et al. 2003). Accord-
ingly, we observe significant enrichment of small RNA-seq
reads at the Let-7 cluster specifically after 48 h (Fig. 3C).
Conversely, miRNAs miR-14 and miR-34, which target the
ecdysone receptor and other ecdysone responsive genes, are
significantly down-regulated after 48 h. These results suggest
that our transcript, protein, and small RNAprofiles accurately
reflect the ecdysone response in Drosophila Kc167 cells.

FIGURE 2. tRNA abundance scales with biased codon representation in the Kc167 cell proteome. (A) Experimental design for integrated tRNA,
transcript, and protein profiling in Drosophila Kc167 cells during the temporal-specific early and late ecdysone responses. Small RNA and mRNA
analyses were performed on biological replicates at 0, 3, and 48 h after treatment with ecdysone. Label-free quantitative mass spectrometry was
performed at 0 and 48 h on cellular lysates matched to small RNA-seq experiments. (B) Correlation plot for transcriptional codon usage (x-
axis) and codon representation in the proteome at 0 h. ρ = 0.982; Spearman’s rank correlation, P < 2.2 × 10−16. (C) Biased codon representation
in the proteome compared with transcriptomic codon usage frequencies (y-axis) as a function of transcriptomic codon usage (x-axis). (D)
Correlation plot for biased proteomic codon representation (y-axis) with tRNA levels (log10 tRNA abundance, as measured by small RNA-seq
experiments; x-axis). ρ = 0.639; Spearman’s rank correlation, P = 6.9 × 10−6. (E) Box and whisker diagram comparing the abundance for all
tRNAs matching underrepresented codons (pCR < tCU, blue) with tRNAs matching overrepresented codons (pCR > tCU, red), comparing the
proteome with the transcriptome. (pCR) Proteomic codon representation, (tCU) transcriptomic codon usage. P = 5.9 × 10−4, Wilcoxon rank
sum test.
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Dynamic codon usage and codon usage bias in response
to ecdysone-induced differentiation

Analysis of transcript codon usage across 0, 3, and 48 h ecdy-
sone time points reveals significant changes in the frequency
with which specific codons are used by the Kc167 trans-
criptome, most notably after 48 h (Fig. 4A,B). In particular,
we find that codon triplets enriched in differentiation-associ-
ated genes, obtained using the Gene Ontology Consortium
(GO:0030154) increase in codon usage after 48 h, whereas
codon triplets enriched in proliferation-associated genes
(cell cycle, GO:0007049) decrease after 48 h (Fig. 4B, P <
2.2 × 10−16, Spearman’s rank correlation). This result is
consistent with the differentiation of Kc167 cells into macro-
phages after 48 h, and with recent reports suggesting that

differentiation- and proliferation-associated genes are en-
riched for distinct codons (Gingold et al. 2014).
Aggregate analysis of amino acid enrichment suggests that,

compared with proliferation genes, differentiation-associated
genes are also enriched for specific amino acids that increase
after treatment with ecdysone (Fig. 4C,D). Since increasing
or decreasing the frequency of specific amino acids is likely
to have a significant influence over general codon usage, we
next analyzed whether the ecdysone-induced transcriptome
favored specific synonymous codons, a phenomenon called
Codon Usage Bias (CUB). Instead of comparing the frequen-
cy of a given codon to all other codons, CUB takes into
account the relative frequency of a codon to all other synon-
ymous codons that encode for the same amino acid (Fig. 4E,
F; Supplemental Fig. S2). This analysis reveals that, after 48 h,

FIGURE 3. Transcriptional, proteomic, and small RNA response to ecdysone-induced cellular differentiation. (A) Expression of relevant cellular
identity and differentiation pathway genes at 0, 3, and 48 h suggests ecdysone induces plasmatocyte-to-macrophage differentiation after 48 h. (B).
Correlation of significantly increasing and decreasing proteins identified by label-free quantitative mass spectrometry (log2 ratio, y-axis) with changes
in gene expression (log2 ratio, x-axis) after 48 h. ρ = 0.627; Spearman’s rank correlation, P < 2.2 × 10−16. (C) Validation of small RNA-seq experi-
ments and response to ecdysone. Heatmap representation of miRNA expression (log2 ratio) during the early and late response identifies significant
changes for previously characterized ecdysone-response miRNAs (top). For example, temporal-specific expression of the Let-7 miRNA cluster during
the late ecdysone response (bottom). Heatmap taken from IGV Genome Browser (Thorvaldsdottir et al. 2013).
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FIGURE 4. Dynamic codon usage in the Drosophila transcriptome correlates with cellular differentiation status. (A) Correlation analysis for changes
in codon usage in the transcriptome after 3 h ecdysone treatment, with codons that are enriched or depleted in differentiation genes. ρ = 0.528;
Spearman’s rank correlation, P = 1.7 × 10−5. (y-axis) Codon usage frequency for genes with differentiation gene ontology (GO) term divided by codon
usage frequency for genes with proliferation (cell cycle) GO. Individual codons are color-coded by the relevant amino acid. (B) Analogous correlation
plot for changes in transcriptional codon usage after 48 h. ρ = 0.773; Spearman’s rank correlation, P < 2.2 × 10−16. (C) Correlation plot for changes in
amino acid usage (aggregate of all synonymous codons) in the transcriptome after 3 h with amino acid usage in differentiation versus proliferation
genes. ρ = 0.746; Spearman’s rank correlation, P = 2.4 × 10−4. (D) Analogous correlation plot for changes in amino acid frequency in the transcrip-
tome after 48 h. ρ = 0.729; Spearman’s rank correlation, P = 3.9 × 10−4. (E) Correlation analysis for differences in codon usage bias across the 3 h
transcriptome compared with codon usage bias in differentiation versus proliferation genes. ρ = 0.296; Spearman’s rank correlation, P = 0.021. (F)
Correlation analysis for differences in codon usage bias in the 48 h transcriptome compared with codon usage bias in differentiation versus prolif-
eration genes. ρ = 0.653; Spearman’s rank correlation, P = 1.2 × 10−8.
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the Kc167 transcriptome favors synonymous codons that are
enriched in differentiation genes (Fig. 4F, P = 1.2 × 10−8,
Spearman’s rank correlation). Together, these results provide
evidence suggesting that ecdysone-induced differentiation
influences both codon usage and codon usage bias, most no-
tably in the transcriptome during the late 48 h time point
(Fig. 4B,D,F). We therefore next asked whether these changes
become evident in the proteome and to what degree tRNA
levels are influenced by ecdysone.

Codon representation in the late proteome mirrors
the early transcriptional response

As described for transcript codon usage analyses, we com-
pared codon representation in the Kc167 proteome before
treatment and 48 h after treatment with ecdysone, taking
into account the abundance of each protein. Correlation anal-
ysis for changes in proteomic and transcriptomic amino acid
frequencies reveals a significant relationship between the late
proteomic and early transcriptional response (Fig. 5A, P =
2.4 × 10−4, Spearman’s rank correlation), but not between
the late proteomic and late transcriptional response (Fig.
5B, P > 0.05). Similarly, changes in transcript codon usage
and proteomic codon representation significantly correlate
between the early transcript/late proteomic response (Fig.
5C, P = 1.2 × 10−4, Spearman’s rank correlation), but not be-
tween the late transcript/late proteomic response (Fig. 5D, P
= 0.035). These results suggest that whereas early changes in
transcription are reflected in the late stage proteome, changes
in transcript abundance after 48 h may require more time to
become efficiently translated and evident in the proteomic
landscape. A second possibility is that tRNA abundance be-
comes a limiting factor in howefficiently changes in codonus-
age can be translated into protein. Therefore, we next asked
whether ecdysone influences the relative abundance for each
tRNA type, and whether a relationship may exist between
tRNA dynamics and proteomic codon representation.

Early and late tRNA dynamics in response
to 20-hydroxyecdysone

Analysis of tRNA levels after a 3 h treatment with ecdysone
shows that minimal changes occur for most tRNA types,
and that the relative hierarchy of tRNA abundance is main-
tained (Fig. 5E; Supplemental Fig. S5). However, the most
significantly increasing tRNA molecule, tRNAThr(CGU), in-
creases ∼85% after 3 h of ecdysone treatment, and specifi-
cally decodes a differentiation-gene enriched codon, ACG,
that increases in proteomic codon representation after 48 h
despite a slight decrease in transcriptional codon usage
(Fig. 5C). The level of tRNAThr(CGU) continues to increase af-
ter 48 h (Fig. 5F), during which the transcript codon usage
for ACG also increases compared with nontreated Kc167 cells
(Fig. 5D). We speculate that by increasing the level of
tRNAThr(CGU), one of the least abundant tRNAs in Kc167

cells, the translational efficiency for transcripts carrying this
suboptimal codon may also increase, leading to an increase
in proteomic codon representation.
In general, tRNA levels fluctuate more dramatically after

48 h, though the relative abundance for most tRNAs
continues to be maintained. In addition to tRNAThr(CGU),
tRNAs corresponding to codons Leu(CUU), Gly(GGA),
Gly(GGC), and Asn(AAC) increase >40% after 48 h (Fig.
5F), and all but Leu(CUU) are enriched in differentiation
genes. Only tRNAIle(UAU), which corresponds to a prolifera-
tion-gene enriched codon, Ile(AUA), decreases >40% after
48 h (Fig. 5F). While these results suggest some bias in the
up- and down-regulation of specific tRNAs, we find no stat-
istically significant correlation between changes in codon us-
age or proteomic codon representation with changes in tRNA
abundance. We speculate that ecdysone-induced changes in
transcript codon usage may not require significant adjust-
ment of tRNA levels, but that other cell types with more dis-
tinct codon repertoires may inherently require unique tRNA
programs. Nevertheless, the correlation between tRNA abun-
dance and proteomic codon representation in untreated
Kc167 cells continues to hold true after 48 h (Supplemental
Fig. S6), suggesting that tRNA levels are an important player
in proteomic output.

DISCUSSION

We present an integrated analysis describing a relationship
between tRNA abundance, codon usage, and protein synthe-
sis. High abundance tRNAs correlate with codons that are
overrepresented in the Drosophila proteome compared with
the observed transcript codon usage. Conversely, tRNAs
that are in low supply are represented in the proteome with
lower frequency than observed in the transcriptome, together
suggesting that tRNA abundance influences the translational
output of the cell. These results are in agreement with recent
studies identifying tRNA levels as an important feature in the
rate of translation elongation. Inhibition of histidine biosyn-
thesis in yeast, for example, causes a significant increase in ri-
bosome occupancy specifically at histidine codons CAU and
CAC (Lareau et al. 2014). Similarly, oxidative stress in yeast
leads to increased ribosome pausing at certain aspartic acid
and serine codons and a loss of ribosome occupancy at
others, suggesting that this effect is governed by tRNA avail-
ability rather than amino acid synthesis (Pelechano et al.
2015). Indeed, fluctuation of tRNA levels in response to ox-
idative stress has been observed in Saccharomyces cerevisiae
(Pang et al. 2014), and additional studies suggest that the lev-
els of specific tRNAmodifications also change dramatically in
a stress-response-specific manner (Chan et al. 2010, 2012).
We speculate that, in addition to changes in tRNA abun-

dance, reprogramming of tRNA modifications may also
represent an important mechanism for regulating cell-type-
specific translation patterns in Drosophila. For example, ex-
posure of yeast to distinct toxicants leads to reprogramming
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FIGURE 5. Codon representation in the late ecdysone proteome closely mirrors the early ecdysone transcriptional response. (A) Correlation analysis
for changes in amino acid representation across the 48 h proteome with changes in amino acid frequency (aggregate usage of all synonymous codons)
in the transcriptome at 3 h. ρ = 0.746; Spearman’s rank correlation, P = 2.4 × 10−4. (B) Analogous correlation plot for changes in amino acid repre-
sentation after 48 h with changes in amino acid frequency in the transcriptome after 48 h. ρ = 0.361; Spearman’s rank correlation, P > 0.05. (C)
Correlation plot for changes in codon representation in the 48 h proteome with transcriptional codon usage after 3 h. ρ = 0.477; Spearman’s rank
correlation, P = 1.2 × 10−4. (D) Analogous correlation plot for transcriptional codon usage after 48 h. ρ = 0.271; Spearman’s rank correlation, P =
0.035. (E) Correlation analysis for codon representation in the proteome after 48 h with changes in tRNA abundance during the early, 3 h ecdysone
response. (F) Analogous correlation analysis for changes in tRNA abundance during the late, 48 h ecdysone response.
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of tRNA wobble modifications and altered translation pat-
terns (Chan et al. 2015), consistent with reports suggesting
that wobble base-pairing otherwise causes significant ribo-
some pausing (Stadler and Fire 2011). Studies probing
tRNA modification in Drosophila melanogaster have identi-
fied modification of guanosine to queuosine in the wobble-
binding position (Owenby et al. 1979), with varying levels
of modification present during development and across other
Drosophila species (Zaborske et al. 2014). Queuosine modifi-
cation depends on nutrient availability and leads to increased
accuracy of codon recognition, suggesting that environmen-
tal context can dramatically influence tRNA modification
and consequently translation. Though a tRNA-specific aden-
osine deaminase, ADAT1, has been identified in D. mela-
nogaster (Keegan et al. 2000), the effects of A to I tRNA
editing in Drosophila have remained largely uncharacterized.
A recent study measuring transcript and tRNA levels dur-

ing tissue development similarly identified a tight correlation
between codon usage and tRNA abundance in mice (Schmitt
et al. 2014). Codon representation was reported to be largely
invariant during development, suggesting a remarkably stable
interface between codon usage and tRNA pools in the tissues
tested. By profiling the tRNAome, transcriptome, and pro-
teome in Drosophila Kc167 cells in response to ecdysone,
we however demonstrate that steroid-hormone signaling in-
duces plasmatocyte-to-macrophage differentiation in Kc167
cells and, in so doing, shifts codon usage and codon usage
bias in favor of codons preferred by differentiation genes.
This effect becomes most pronounced in the transcriptome
after 48 h, reflecting the differentiation state of the cell. The
dynamic, differentiation-associated codon usage we observe
is consistent with a recent report describing distinct codon
preferences in proliferative and differentiated cells (Gingold
et al. 2014). We similarly demonstrate that, like proliferative
and differentiated cell types, ecdysone-induced differentia-
tion of Kc167 cells leads to changes in tRNA abundance
in a pattern also consistent with the developmental progres-
sion of the cell. For example, tRNAThr(CGU), which increases
at both early and late time points, correlates with increased
proteome codon representation despite minimal fluctuation
in transcript codon usage, suggesting that by changing the
abundance of tRNAThr(CGU), translational efficiency of
the cognate codon may be improved. One limitation of our
analysis is that nearly one-third of all tRNA types remainmiss-
ing in the current annotation database for Drosophila tRNA
genes, which rely on predictive algorithms for assigning
gene identity. This suggests that either current algorithms
cannot accurately predict all Drosophila tRNA types or that
the current reference genome sequence ismissing genomic re-
gions corresponding to tRNA genes. Despite this limitation,
analysis of tRNA dynamics for codons in which annotations
for all synonymous codons are available (Gln, Glu, and Lys)
suggests that, after 48 h, tRNA abundance is dynamically al-
tered in amanner that relates to differentiation-associated co-
don usage bias

Potential differences in mRNA and protein stability must
also be considered as mechanisms contributing to biased co-
don representation. Genome-wide RNA decay profiling in
yeast has revealed strong biases for optimal and nonoptimal
codons in stable and unstable mRNAs, respectively (Presnyak
et al. 2015). However, codon usage predicts both messen-
ger half-life and translation elongation rate, suggesting that
changes in tRNA abundance, and consequently codon opti-
mality, may itself drive changes in mRNA stability, indepen-
dent of transcription. Our analysis also cannot discriminate
between changes in transcription and changes in tRNA
stability, as tRNAs are heavily modified post-transcriptionally
in a manner that affects both the stability and maturity of the
tRNA isoacceptor molecule (Phizicky and Hopper 2010).
Nevertheless, the variation in tRNA abundance after treat-
ment with ecdysone suggests that different cell types may
possess unique tRNA repertoires that are perhaps tuned to-
ward cell-type-specific transcriptional codon usage. Because
tRNA abundance appears to play a role in translational effi-
ciency, differences in tRNA levels between cell types would
likely also have a significant impact on the diversity of the
proteome. Recent whole-genome sequencing studies have
identified significant tRNA gene copy variation (tgCNV) be-
tween individuals (Iben and Maraia 2014). Whether tgCNV
leads to differences in tRNA abundance among human pop-
ulations, and consequently, whether tgCNV influences prote-
ome diversity remains an important and unaddressed avenue
for future research.

MATERIALS AND METHODS

Cell culture and 20-hydroxyecdysone treatment

Kc167 cells were grown in CCM3 serum-free insect media (HyClone
SH30065.01) at 25°C. For ecdysone treatment, cells were plated to
0.5 × 106 cells/mL and grown overnight. Cells were treated the
following morning with 20-hydroxyecdysone (Sigma) at a final con-
centration of 5 × 10−7 M for 3 or 48 h. Cells in both 0 h experiments
were treated with ethanol as a control for ethanol-dissolved ecdy-
sone treatment. Proteomics and small RNAs were then harvested
from Kc167 cellular lysates.

Small RNA-seq

Small RNAs <200 nt were enriched from total RNA samples puri-
fied from Kc167 cells using the mirVana Isolation Kit (Life
Technologies; cat # AM1560), without any subsequent size selec-
tion. Small RNA library preparation and sequencing was performed
by the Genomic Services Laboratory at HudsonAlpha. Small RNA-
sequencing reads and adaptor sequences were trimmed using the
ngsShort toolkit (Chen et al. 2014). Sequencing reads were subse-
quently mapped to the Dm6 release of the Drosophila genome
(Hoskins et al. 2015) using bowtie1.0.0 (Langmead 2010), allowing
one mismatch and randomly assigning multimapping reads a single
alignment to the highest scoring region. Exact read duplicates,
which arise from PCR amplification were removed using samtools
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(Li et al. 2009). Sequencing replicates (2) within each biological rep-
licate (2) were combined and tRNA read counts for each annotated
tRNA gene, including 15 nt upstream and downstream, were then
extracted using bedtools (Quinlan 2014). Differential expression
normalization and analysis was performed using DEGseq (Wang
et al. 2010). Cumulative fold change for each codon was calculated
by summing normalized read counts across each tRNA isoacceptor
pool and taking the average fold change between conditions across
all biological replicates. FormiRNA analyses, small RNA-sequencing
readsweremapped to annotatedmiRNAs, and differences inmiRNA
levels expressed as log2 normalized read ratios.

Label-free quantitative mass spectrometry

Whole cell lysates for each biological replicate, matched with small
RNA-seq samples, were submitted for label-free quantitative mass
spectrometry analysis by the Emory University Proteomics Core as
recently described (Donovan et al. 2013). Briefly, protein extracts
were separated by SDS-PAGE in a 10% acrylamide gel, which was
subsequently cut into three molecular weight regions. Gel slices
were digested overnight with trypsin and peptides extracted with
5% formic acid, 50% ACN, and dried in a SpeedVac concentrator.
Purified peptides were analyzed for each biological replicate by
reverse-phase liquid chromatography coupled with tandem mass
spectrometry (LC-MS/MS). A total of 405 proteins were identified
as significantly changing after 48 h, with log2 fold change cutoffs
(48 h/0 h) set at the 95% confidence interval for a Gaussian fit to
the experimental data. Filtering criteria required that one or more
peptides be sequenced across four samples, signal-to-noise ratio
maximum measurements for each protein be greater than 10, and
coefficient of variation <50%. Using these filtering criteria, FDR
for significantly changing proteins is estimated to be 5.2%

Codon usage and codon usage bias calculations

Codon usage was calculated by assigning the coding sequences for all
transcripts and proteins detected in transcriptomic and proteomic
analyses, and counting the occurrence of every nucleotide triplet
for each gene, requiring that coding sequences end with a stop co-
don and are a multiple of three. Transcriptomic codon usage and
codon frequencies in proteomic data were normalized by the abun-
dance of mRNAs and proteins, respectively. Specifically, codon
counts for each coding sequence were multiplied by log2 microarray
expression values (Wood et al. 2011) or by spectral counts. Codon
counts were subsequently pooled for all coding sequences within
specific biological replicates and conditions, and percent codon us-
age calculated as the frequency of using any given codon with respect
to all codons. Codon usage bias was similarly calculated, and repre-
sented as the frequency of using any given codon with respect to all
synonymous codons for a specific amino acid.

tRNA analyses

tRNA sequencing reads were mapped to annotated tRNA gene loci,
including 15 nt upstream and downstream from the annotated start
and stop locations, and normalized log2 ratios between each condi-
tion were calculated using DEGseq (Wang et al. 2010). Analysis of
tRNA levels was restricted by the current annotation set for tRNA
species using the reference 6 release of the Drosophila melanogaster

genome (Hoskins et al. 2015). To date, only 44 tRNA types, includ-
ing the Selenocysteine isoacceptor, are currently annotated, whereas
annotations for 19 tRNA types are currently missing, presenting a
major limitation in our ability to estimate the abundance of all
tRNA levels. This limitation also prevents us from calculating the
relative abundance of tRNAs with respect to all synonymous co-
don-tRNAs decoding for all but three amino acids: Gln, Glu, and
Lys (Supplemental Fig. S7). Estimations of tRNA abundance for an-
notated tDNAs were compared with reference genome gene copies,
and with transcriptome and proteome codon usages calculated as
described above, using Spearman’s rank correlation analysis.
tRNA abundances for codons that were observed with greater or
lesser frequency in the proteome than the transcriptome were com-
pared using the Wilcoxon-rank sum test.

DATA DEPOSITION

RNA-seq data have been deposited in GEO under accession number
GSE69934.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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