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CTCF plays diverse roles in the regulation of eukaryotic genes. A new study by Lefevre et al. in a recent issue
of Molecular Cell reveals a novel mechanism in which noncoding RNA transcription and nucleosome reposi-
tioning evicts CTCF from a regulatory element to facilitate induction of a nearby gene.
The zinc finger protein CTCF binds directly

to specific DNA sequences and plays mul-

tiple roles in the regulation of eukaryotic

genes, including regulation of enhancer-

promoter interactions, imprinting, inhibi-

tion of nucleolar transcription, and coacti-

vation of unlinked genes (Wallace and

Felsenfeld, 2007). These diverse functions

are in part mediated by the ability of CTCF

to stabilize long-range chromatin contacts

and organize chromosomes into higher-

order complexes through interactions

with distinct nuclear partners. While

site-specific phosphorylation and poly-

ADP-ribosylation are two known post-

translation modifications crucial to CTCF

functions (El-Kady and Klenova, 2005;

Yu et al., 2004), the mechanisms that

modulate CTCF binding to its target se-

quence are not completely understood.

Bacterial lipopolysaccharides (LPS)

rapidly induce expression of the chicken

lysozyme gene via well-characterized

upstream enhancer and silencer ele-

ments. LPS initiates transcription through

stepwise recruitment of transcription fac-

tors (NF1, Fli-1, and CREB binding protein)

followed by concomitant alterations in

chromatin structure within the upstream

cis elements (Lefevre et al., 2005). A recent

study in Molecular Cell by Bonifer and co-

workers on the induction of the lysozyme

gene by LPS explores how CTCF/cohe-

sin-mediated repression of an enhancer

element can be overcome through abro-

gation of CTCF binding to DNA, prior to

gene activation (Lefevre et al., 2008).

Consistent with earlier studies, the au-

thors observe recruitment of C/EBPb,

Fos/AP1, and RNA polymerase II (RNAPII)

to a hormone response element (HRE) up-

stream of the lysozyme gene within 20 min

of LPS stimulation (Figure 1B). Induction

of transcription is accompanied by alter-
ations in the chromatin landscape charac-

terized by the rapid induction of DNase I

hypersensitivity (DHS) at the HRE and

at the upstream �2.7 kb C/EBP sites;

however, micrococcal nuclease (MNase)

hypersensitivity gradually declines at the

�2.4 kb CTCF occupancy site. This finding

suggests that LPS induces the displace-

ment of nucleosomes into the CTCF occu-

pancy site while simultaneously exposing

the upstream C/EBP enhancer element

and HRE. It has been previously reported

that repositioning of nucleosomes in the

H19 imprinting control region attenuates

CTCF-target site interaction and results in

the loss of CTCF insulator function (Kan-

duri et al., 2002). Consistent with the notion

that CTCF cannot bind nucleosomal DNA,

the authors observe specific depletion of

CTCF from its occupancy site by chroma-

tin immunoprecipitation after LPS stimula-

tion. Moreover, RNAi-mediated depletion

of CTCF leads to earlier onset of LPS-in-

duced lysozyme gene expression. Taken

together, these results suggest that the

upregulation of lysozyme expression is

mediated in part by the removal of CTCF

repression and by LPS-induced recruit-

ment of transcription factors to the up-

stream enhancer.

What are the implications of chromatin

changes and the enrichment of RNAPII

at the �1.9 kb to �2.7 kb upstream regu-

latory regions upon LPS stimulation?

Recent findings indicating that many in-

tergenic regions are transcribed into non-

coding RNAs (ncRNA, reviewed in Pra-

santh and Spector, 2007) led the authors

to search for possible transcripts within

the lysozyme cis-regulatory region. A

novel antisense transcript LINoCR (LPS

inducible noncoding RNA) that overlaps

the�2.4 kb/�2.7 kb region was identified

and found to be induced by LPS in a
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manner similar to the lysozyme gene.

The authors go on to provide compelling

evidence that the HRE acts as an LPS-

responsive promoter to activate LINoCR

transcription (Figure 1C).

Consistent with reports associating his-

tone H3 phosphoacetylation with the acti-

vation of inducible genes (Clayton et al.,

2000), the authors observe IKKa recruit-

ment and a similar phosphoacetylation

pattern over the LINoCR locus upon

LPS induction. In addition, short-term

treatment with the inhibitor of transcrip-

tional elongation, 5,6-dichloro-1-b-D-ribo-

furanosyl-benzimidazole, permitted tran-

scription of many immediate-early genes

but abrogated LPS-induced LINoCR ex-

pression, IKKa recruitment, histone H3

phosphoacetylation, and specific CTCF/

cohesin eviction. These data demonstrate

that ncRNA transcription is necessary for

the changes in chromatin features within

the �3 kb region and for the subsequent

eviction of CTCF from its occupancy site.

In summary, evidence presented by

Lefevre et al. (2008) supports a model in

which transcription-dependent chromatin

remodeling leads to physical dislodge-

ment of CTCF prior to gene activation.

CTCF and cohesin form an insulator com-

plex at position �2.4 kb (Figure 1A). LPS

stimulation triggers destabilization of

nucleosomes and exposure of the two

flanking enhancer elements, which in turn

allows recruitment of additional C/EBPb

proteins to the �2.7 kb element and the

initiation of ncRNA synthesis from the HRE

(Figure 1B). Transient transcription of

LINoCR and the concomitant passage of

the RNAPII complex through the �2.4 kb

element are correlated with IKKa recruit-

ment, H3 phosphoacetylation, and repo-

sitioning of a nucleosome over the CTCF

occupancy site, a sequence of events
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leading to the eventual evic-

tion of the CTCF/cohesin in-

sulator complex (Figures 1C

and 1D). The results suggest

an alternative mechanism,

other than covalent modifica-

tion of the CTCF protein, to

regulate the activity of the

CTCF insulator.

Recent studies indicate that

98% of the transcriptional

output of the human genome

consists of ncRNAs that per-

form diverse regulatory roles

through distinct mechanisms,

including dosage compensa-

tion, imprinting, gene silenc-

ing, modulation of transcrip-

tion, and translation (Prasanth

and Spector, 2007). Further-

more, ncRNAs have been

reported to regulate epige-

netic states by facilitating oc-

cupancy of chromatin-binding

proteins. Characterization of

the four human HOX loci

has led to the identification of

231 HOX ncRNAs whose ex-

pression patterns demarcate

broad chromosomal domains

of differential histone methyla-

tion and RNA polymerase ac-

cessibility (Rinn et al., 2007).

For example, the HOTAIR

ncRNA residing in the HOXC

locus represses transcription

of the HOXD locus in trans

through recruitment of the

polycomb repressive complex

2 (PRC2) that is required for subsequent

histone H3 lysine-27 trimethylation of the

HOXD locus (Rinn et al., 2007). In addition,

Ohta and coworkers have shown that

RNAPII transcription of ncRNAs is required

for chromatin remodeling at the fbp1+

locus in Schizosaccharomyces pombe

during transcriptional activation (Hirota

et al., 2008). These observations are con-

ceptually similar to the mechanism by

which LINoCR regulates CTCF binding.

Given the importance of CTCF in maintain-

ing chromosomeorganization and of PRC2

in gene silencing in different cellular con-

texts, these findings raise the

possibility that many ncRNAs

regulate the interaction be-

tween chromatin proteins and

their DNA targets and that

this function might be an im-

portant epigenetic regulatory

strategy in diverse develop-

mental processes.
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Figure 1. LPS-Induced Chromatin Reorganization within �3 kb cis
Element of the Lysozyme Gene
(A) In unstimulated monocytes, CTCF and cohesin form an insulator complex
at the �2.4 kb silencer element.
(B) Short LPS stimulation induces binding of C/EBPb, AP1, and RNAPII to
the exposed HRE, and the displacement of nucleosomes toward the CTCF
occupancy site (black arrows).
(C) At the 1 hr time point, LINoCR transcription, IKKa recruitment, specific H3
phosphoacetylation (AC-P), and repositioning of a nucleosome over the CTCF
site culminate in the eviction of the CTCF/cohesin complex.
(D) Prolonged LPS stimulation prevents binding of CTCF/cohesin due to re-
positioning of the nucleosome over its site. Recruitment of additional C/EBP
and CBP to the �2.7 kb enhancer increases H3 acetylation (�AC) and
maintains the lysozyme gene in an active state.
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