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ScienceDirect
The past decade of cancer research has ushered in a

comprehensive understanding of the way that the sequence of

the genome can be co-opted during the process of

tumorigenesis. However, only recently has the epigenome, and

in particular the three-dimensional topology of chromatin, been

implicated in cancer progression. Here we review recent

findings of how the cancer genome is regulated and

dysregulated to effect changes in 3D genome topology. We

discuss the impact of the spatial organization of the genome on

the frequency of tumorigenic chromosomal translocations and

the effects of disruption of the proteins responsible for the

establishment of chromatin loops. Alteration of the three-

dimensional cancer genome is a rapidly emerging hallmark of

multiple cancer subtypes.
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Introduction
Cancer is largely associated with the sequential acquisi-

tion of mutations in a single lineage of cells that ultimate-

ly leads to unrestrained proliferation. The foundations of

cancer biology were laid through the discovery of onco-

genes and tumor suppressors with canonical roles in

proliferation and cell cycle control. Decades of research

have elucidated the major drivers and the genetic mech-

anisms responsible for tumorigenesis, identifying point

mutations and small-scale alterations that directly affect

individual proteins in a one-dimensional fashion. The

contribution of the epigenome to this process has become

more apparent with the discovery of mutations in genes

known to regulate DNA methylation and histone modifi-

cation. These mutations are largely considered to affect

gene expression in a two-dimensional fashion through the

modulation of transcription factor recruitment. However,
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the precise mechanisms by which these alterations of the

epigenome contribute to cancer progression has remained

elusive. Only recently has the three-dimensional context

of the genome been identified as a major player in the

development and progression of cancer [1,2,3,4��].

The genomes of higher eukaryotes are packaged into

exquisitely organized hierarchical structures. Linear

DNA is wrapped around histone proteins forming the

10 nm nucleosomal fiber which is subsequently folded in

three-dimensions to create loops of DNA that form dis-

crete neighborhoods of genes at the sub-megabase level

[5�,6]. These neighborhoods are formed through the

action of multiple proteins including CCCTC-binding

factor (CTCF) and the cohesin complex [7,8]. Groups of

gene neighborhoods are further organized into large,

isolated, megabase structures termed topologically asso-

ciating domains (TADs) [9–13]. Each of these layers of

organization have pronounced effects on gene expression

and the control of cell identity and cell fate. The mecha-

nisms by which these three-dimensional interactions are

manipulated and coopted in the context of cancer are the

subject of this review (Figure 1).

Hijacking topology: the contribution of normal
DNA architecture to carcinogenesis
In the absence of alteration of the topological structure of

the three-dimensional genome, recent work has demon-

strated that the normal organization of the genome pre-

disposes certain cell types to the acquisition of specific

cancerous lesions. Chromosomal rearrangements, such as

translocations, require the formation and incorrect reso-

lution of DNA double strand breaks. Higher order chro-

matin structure has been shown to play a role in the

formation of specific translocations through the spatial

coordination of otherwise unrelated DNA sequences.

Through the development of sequencing technologies

to capture translocation junctions in B lymphocytes,

multiple groups have shown that translocations between

pairs of DSBs occurring on the same chromosome are

strongly preferred over interchromosomal events [1,2].

The constrained physical proximity of intrachromosomal

interactions implies that spatial organization of chromo-

somes influences the translocation process. In line with

this hypothesis, modeling of somatic copy-number altera-

tions and genome-wide chromosome conformation cap-

ture suggests that the distribution of chromosomal

alterations is spatially related to three-dimensional geno-

mic architecture [14]. These results were confirmed by

direct comparisons of translocation frequency and spatial

proximity of interchromosomal interactions [15,16]. Cu-

mulatively, these studies show that the three-dimensional
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Figure 1
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Contribution of chromatin architecture to our understanding of cancer.
Chromatin architecture has been implicated in the pathogenesis of cancer through multiple lines of evidence. The normal topology of the genome

has been shown to predispose certain cell types to the acquisition of certain chromosomal translocations such as the MYC/IgH translocations

associated with specific types of lymphoma (left panel). The genetic mutation of components involved in chromatin looping, including the cohesin

complex (red/green/blue ring) and CTCF (orange squares), has also been observed in many cancer types (center panel). These mutations

(illustrated by *) likely cause quantitative changes in factor binding, illustrated here by a change in ChIP-seq signal. Lastly, disruption of regulatory

regions that serve as the anchors for the looping machinery has been identified in cancer and multiple other diseases (right panel).
proximity between two loci is directly proportional to the

likelihood of translocation. When combined with a re-

quirement for positive selection in cancer cells, these

observations explain the frequency of recurrent translo-

cations such as BCR-ABL and MYC-IGH.

Mutation or genetic alteration of genome
organization components
In addition to serving as a template for large-scale chro-

mosomal aberrations, the three-dimensional genomic ar-

chitecture is often perturbed in cancer through genetic

alteration of the proteins involved in the establishment

and maintenance of chromatin interactions. In particular,

the cohesin complex, a multimeric ring structure involved

in mediating looping interactions, has been found to be

mutated in a wide variety of cancers. In addition to

participating in three-dimensional looping, the cohesin

complex is also involved in sister chromatid segregation

during mitosis. Given the well-established role for aneu-

ploidy in cancer, it has been hypothesized that mutation

of the cohesin complex would contribute to carcinogene-

sis through the mis-segregation of chromosomes [17,18].

While this may be true in some cases, recent work has

made it clear that genetic disruption of the cohesin
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complex plays a much more subtle role in cancer forma-

tion [19��,20,21,22].

The first evidence that genetic mutation of the cohesin

complex may not result in aneuploidy came from the

genetic characterization of acute myeloid leukemia

(AML), an aggressive malignancy of the bone marrow.

AML is one of the most genetically stable adult cancers

with minimal aneuploidy and an average of 10-15 coding

mutations per patient [23,24]. Cohesin complex muta-

tions were first described in AML in 2012, occurring in

approximately 13% of patients [25,26,27]. These muta-

tions occur in all four members of the cohesin complex

(STAG2, SMC3, SMC1A, and RAD21) and are typically

missense or truncating mutations. The spectrum of muta-

tions observed implies a loss of function mechanism

which is consistent with the finding that cohesin mutated

leukemia cells have reduced levels of chromatin-bound

cohesin components [3]. Recent work has demonstrated

that mutations in the cohesin complex impair hemato-

poietic progenitor differentiation [19��,20,21], suggesting

a clear mechanism by which the cohesin complex

may play a role in cancer progression in the absence of

aneuploidy.
www.sciencedirect.com
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In addition to AML, the cohesin complex has been found

to be mutated in multiple other types of cancer. Most

prominently, mutations in STAG2 occur in 20–30% of

urothelial bladder carcinoma and are not associated with

aneuploidy [22,28,29,30]. Mutations in the cohesin com-

plex have also been found in glioblastoma [31], medullo-

blastoma [32], breast cancer [33], pancreatic ductal

adenocarcinoma [34], and Ewing sarcoma [35].

Beyond the cohesin complex, recurrent mutations have

been observed in CTCF and other cohesin-interacting

proteins. The first report of CTCF missense mutations in

cancer identified multiple zinc finger domain mutations in

breast, prostate, and Wilms’ tumors [36]. These missense

mutations each selectively altered CTCF binding to a

subset of target sites but did not completely abrogate

DNA binding by CTCF. These results imply that selective

alteration of chromatin architecture, perhaps in a cell type-

specific manner, can play a causative role in cancer devel-

opment. Notably, point mutations and copy number loss of

CTCF are commonly observed in breast cancer [37],

prostate cancer [37], and endometrial cancer [38], impli-

cating a haploinsufficient phenotype for CTCF. Indeed,

mouse models of CTCF haploinsufficiency indicate a

strong predisposition to cancer with 80% of Ctcf heterozy-

gous knockout mice succumbing to cancer by 100 weeks of

age compared to only 40% of wildtype littermates. This

50% reduction in Ctcf gene dosage has profound effects on

DNA methylation, suggesting a role for CTCF in main-

taining the stability of global cytosine methylation [39].

Despite the abundance of cancerous mutations detected

in the genes known to regulate chromatin topology, the

precise mechanism of action of these mutations remains

elusive. Many studies have addressed the consequence of

loss of cohesin or CTCF via knockdown or knockout in

post-mitotic cells showing widespread disruption of long-

range interactions and concomitant changes in the ex-

pression of nearby genes [40,41,42,43,44]. However, can-

cer-associated mutations in these proteins are often

heterozygous with the mutated allele expressed, indicat-

ing that a reduction in wildtype protein levels by knock-

down or knockout may not phenocopy a heterozygous

mutation. Future work investigating the consequences of

cohesin complex or CTCF mutation on three-dimension-

al chromatin architecture of cancer cells will provide key

insights into the mechanism of action of these mutations.

It remains unclear how these mutations confer a carcino-

genic phenotype and whether all mutations in genes

regulating the three-dimensional genome have the same

mechanistic effect.

Genetic and epigenetic dysregulation of
chromatin architecture
In the absence of direct disruption of chromatin organi-

zers, genetic or epigenetic dysregulation of the non-

coding genome can have profound effects on chromatin
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architecture. In particular, changes in the sequence or

epigenetic milieu of transcription factor binding sites can

lead to alterations in chromatin interactions which have

broad-reaching effects on gene expression and cellular

identity. Greater than 95% of genome-wide association

study-identified SNPs are located in intergenic regions

and more than 75% associated with DNase I-hypersensi-

tive sites, indicating a strong link to regulatory elements

[45]. Additional studies have linked these disease-associ-

ated polymorphisms in non-genic regions with regulatory

elements involved in chromatin organization and looping

[46,47�]. Similarly, recent work studying colorectal cancer

(CRC) has shown that certain genetic subtypes of CRC

are characterized by a predominance of mutations at

CTCF binding sites [48��]. This enrichment for muta-

tions at CTCF binding sites was only observed in the

context of simultaneous cohesin binding, implicating a

specific subset of CTCF binding sites in the pathogenesis

of CRC. Moreover, these CTCF binding site mutations

were highly associated with AT > GC mutations, previ-

ously identified as a unique mutational signature in

cancer [49], and are enriched at specific positions in

the CTCF consensus sequence. Importantly, as few as

two SNPs in a CTCF binding site lead to complete

abrogation of CTCF binding [50]. Across multiple patient

samples, CTCF binding site mutations display a unim-

odal distribution whereby a small number of patients

account for a majority of the mutations in CTCF binding

sites. On a more global scale, CTCF binding site muta-

tions are coupled to late replication timing domains and

previous studies have shown that these CTCF/cohesin

binding sites are not replicated by the leading strand

DNA polymerase Pol e but by another uncharacterized

polymerase [44]. Taken together, these results imply that

a subset of CRC patients may have global defects in the

repair of mutations in CTCF binding sites. Whether

these mutations are causative of or merely correlated

with cancer progression remains to be shown. Important-

ly, this mutational signature was not unique to CRC and

was observed in multiple other cancer types, suggesting a

more universal role for dysregulation of CTCF binding in

the pathogenesis of cancer.

CTCF binding patterns can also be influenced by epige-

netic modification of its binding sites. DNA methylation

of the CTCF consensus binding sequence has been

shown to control cell type-specific CTCF binding

[51,52�], indicating that CTCF occupancy can be readily

modulated by reversible epigenetic alterations. As dis-

ruption of DNA methylation is a hallmark of multiple

types of cancer [53,54,55], it is possible that changes in

DNA methylation directly or indirectly affect CTCF

binding. One study of IDH mutant glioma has linked

hypermethylation of CTCF binding sites to dissolution of

important domain boundaries and aberrant expression of

powerful oncogenes [4��]. Future, more in-depth studies

of CTCF binding in cancer subtypes with altered DNA
Current Opinion in Genetics & Development 2016, 36:1–7
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methylation will help to answer these questions and

elucidate other potential mechanisms by which chroma-

tin architecture is disrupted in cancer.

How could changes in chromatin architecture
mechanistically lead to cancer?
While recent years of research have enumerated multiple

examples of how chromatin architecture is dysregulated

in cancer, no studies have provided direct mechanistic

insight into how this dysregulation is translated into

phenotypes associated with cancer. Multiple models

can be posited but no direct evidence exists to distinguish

these possibilities (Figure 2).

Model 1 — Dysregulation of chromatin architecture

prevents cell state changes

Mutation of components of the chromatin organization

machinery such as CTCF and cohesin may not create new

functional states but may, instead, prevent cells from

changing states. In the context of cancer, acquisition of

a CTCF or cohesin mutation in a stem cell would prevent

that cell from differentiation which would increase the

likelihood of acquiring additional mutations and poten-

tially bestow a self-renewal phenotype to progeny cells.

Indirect evidence supporting this model exists in AML

[19��,20,21] whereby mutations in the cohesin complex

members lead to defects in differentiation. Mechanisti-

cally, this model may be possible through the action of
Figure 2
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pioneer factors. In the absence of proper CTCF or

cohesin function, global chromatin accessibility decreases

[44], implying that the only transcription factors capable

of binding DNA may be pioneer factors that can bind

condensed chromatin. In the context of a stem cell that

acquires a mutation in CTCF or cohesin, the expressed

pioneer factors would control a stem cell state and would

perpetuate that state in the absence of additional changes

to the chromatin architecture.

Model 2 – Inappropriate 3D looping and insulation alter

the cis-regulation of key genes and create neomorphic

cell states

Disruption of the components maintaining chromatin

architecture may lead to novel combinations of expressed

and repressed genes and contribute to cancer develop-

ment through the generation of neomorphic cell states. In

depth studies of the binding sites and interactions of

CTCF and cohesin in embryonic stem cells has shown

that super enhancer-associated genes with important

functions for cell identity exist in insulated neighbor-

hoods created by looping interactions between two

CTCF/cohesin binding sites [56�]. Additionally, re-

pressed lineage-specifying developmental regulators are

also found in separate insulated neighborhoods. The

integrity of these activational and repressive insulated

neighborhoods is critical for the proper expression and

repression of nearby genes that exist on the outskirts of
*
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tin architecture can contribute to cancer progression.
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these neighborhoods. Disruption of the neighborhood

boundaries by mutation of CTCF binding sites or by

dysregulation of cohesin or CTCF through mutational

inactivation would lead to inappropriate expression and/

or repression of key developmental genes [56�] which

could create unnatural cell states that have the potential

to cause cancer. One example supporting this model has

been demonstrated in glioblastoma whereby hyper-

methylation of CTCF binding sites leads to reduced

CTCF binding at specific domain boundaries. In this

study, the loss of one such boundary enables a constitu-

tive enhancer to interact aberrantly with the PDGFRA

gene, a prominent oncogene in glioma [4��].

Model 3 — Disruption of chromatin architecture

increases the epigenetic search space probed by cells

and increases the likelihood of developing cancer

The loss of proper DNA repair leads to the acquisition of

many more mutations, thus increasing the mutational

search space of a given cell [57]. Similarly, disruption

of the chromatin architecture of a cell may have pseudo-

random effects on gene expression and repression. New

chromatin loops may be established and old loops

destroyed due to the random nature of whether a func-

tional or non-functional CTCF or cohesin protein is

recruited to a given chromosomal location. This increases

the epigenetic search space of these cells as they probe

pseudo-random chromatin configurations until acquiring

an evolutionarily advantageous cell state that can be

secured through positive selection. In this way, dysregu-

lation of chromatin architecture may contribute to cancer

by increasing epigenetic variability.

Ultimately, these models attribute the consequences of

topological alterations to changes in gene expression. It

has been well established that changes in gene expression

can lead to increased proliferation and decreased differ-

entiation, two key hallmarks of cancer [58]. Moreover, a

causative link between changes in chromatin topology

and changes in gene expression has been established

through multiple lines of evidence [4��,59].

Discussion
The intricate interplay between chromatin architecture

and cell identity has been extensively explored in the

context of healthy cells. However, the involvement of

three-dimensional chromatin organization in the patho-

genesis of cancer has only recently been acknowledged.

Work elucidating the interplay of spatial proximity and

frequency of chromosomal translocations has enhanced

our understanding of how the natural organization of

chromatin can be co-opted to generate recurrent translo-

cations directly responsible for cancer progression. More-

over, high-throughput sequencing efforts have identified

mutations in the genes encoding for components of the

chromatin organization machinery, such as CTCF and

cohesin, as well as mutations in the sites bound by these
www.sciencedirect.com 
factors. These genetic studies have shown that dysregu-

lation of chromatin architecture may be a central hallmark

of tumorigenesis in multiple cancer types. Nevertheless,

it is still unclear precisely how, for example, a mutation in

the cohesin complex affects chromatin organization and

contributes to the pathogenesis of cancer. While it is

known that programmed changes in genome topology

occur during the normal process of differentiation

[5,12,60�,61], little is known about how genome organi-

zation changes in the setting of cancer. Recent work has

shown that tumor cells exhibit a similar overall genomic

architecture to their normal cell counterparts with TAD

and sub-TAD compartments; however, characteristic and

important local differences exist [4��,13,62,63]. These

minor differences may hold the key to understanding

the epigenetics of cancer. As genome wide techniques for

assaying chromatin conformation become more feasible

and widely applied to the study of primary patient can-

cers, the answers to these questions will become clearer.
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Potts C, Hu M, Lei EP, Bosco G et al.: Widespread
rearrangement of 3D chromatin organization underlies
polycomb-mediated stress-induced silencing. Mol Cell 2015
http://dx.doi.org/10.1016/j.molcel.2015.02.023.

60.
�

Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE,
Lee AY, Ye Z, Kim A, Rajagopal N, Xie W et al.: Chromatin
architecture reorganization during stem cell differentiation.
Nature 2015, 518:331-336.

Through the study of embryonic stem cells and four separate embryonic
stem cell-derived lineages, Dixon et al. demonstrate that 36% of the
active and inactive chromosomal compartments change during differ-
entiation. This work demonstrates that chromatin architecture is rapidly
and coordinately changed during normal differentiation.

61. Fraser J, Ferrai C, Chiariello AM, Schueler M, Rito T, Laudanno G,
Barbieri M, Moore BL, Kraemer DC, Aitken S et al.: Hierarchical
folding and reorganization of chromosomes are linked to
transcriptional changes in cellular differentiation. Mol Syst Biol
2015, 11:1-14.

62. Rickman DS, Soong TD, Moss B, Mosquera JM, Dlabal J, Terry S,
MacDonald TY, Tripodi J, Bunting K, Najfeld V et al.: Oncogene-
mediated alterations in chromatin conformation. Proc Natl
Acad Sci 2012, 109:9083-9088.

63. Rousseau M, Ferraiuolo MA, Crutchley JL, Wang XQ, Miura H,
Blanchette M, Dostie J: Classifying leukemia types with
chromatin conformation data. Genome Biol 2014, 15:R60.
Current Opinion in Genetics & Development 2016, 36:1–7

http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0500
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0500
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0505
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0505
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0505
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0505
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0510
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0510
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0510
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0510
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0515
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0515
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0515
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0515
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0520
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0520
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0520
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0520
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0520
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0525
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0525
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0525
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0525
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0525
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0525
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0530
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0530
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0530
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0530
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0535
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0535
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0535
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0535
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0540
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0540
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0540
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0540
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0545
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0545
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0545
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0545
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0550
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0550
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0550
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0550
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0555
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0555
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0555
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0555
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0560
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0560
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0560
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0560
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0565
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0565
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0565
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0565
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0570
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0570
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0570
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0570
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0575
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0575
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0575
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0575
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0580
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0580
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0580
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0580
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0585
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0585
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0585
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0590
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0590
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0590
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0590
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0595
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0595
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0595
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0595
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0600
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0600
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0605
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0605
http://dx.doi.org/10.1016/j.molcel.2015.02.023
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0615
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0615
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0615
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0615
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0620
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0620
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0620
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0620
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0620
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0625
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0625
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0625
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0625
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0630
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0630
http://refhub.elsevier.com/S0959-437X(16)00003-4/sbref0630

	The three-dimensional cancer genome
	Introduction
	Hijacking topology: the contribution of normal DNA architecture to carcinogenesis
	Mutation or genetic alteration of genome organization components
	Genetic and epigenetic dysregulation of chromatin architecture
	How could changes in chromatin architecture mechanistically lead to cancer?
	Model 1 — Dysregulation of chromatin architecture prevents cell state changes
	Model 2 – Inappropriate 3D looping and insulation alter the cis-regulation of key genes and create neomorphic cell states
	Model 3 — Disruption of chromatin architecture increases the epigenetic search space probed by cells and increases the lik...

	Discussion
	References and recommended reading
	Acknowledgements


