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Inference tasks

Simple queries: compute posterior marginal P(Xi |E =e)
Conjunctive queries:

P(Xi ,Xj |E =e) = P(Xi |E = e)P(Xj |Xi ,E = e)
Optimal decisions: decision networks include utility information;

probabilistic inference required for
P(outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?
Explanation: why do I need a new starter motor?
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Inference by Enumeration

With no dependency information, we need 2n entries in joint dist.:

Cavity

Toothache Catch

?
cavity

L

toothache

cavity

catch catch
L

toothache
L

catch catch
L

.108 .012

.016 .064

.072

.144

.008

.576
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For any proposition φ, sum the events where it is true:
P(φ) =

∑
w :w |=φ P(w)
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With no dependency information, we need 2n entries in joint dist.:

Cavity

Toothache Catch

?
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L

toothache
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catch catch
L

toothache
L

catch catch
L

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the events where it is true:
P(φ) =

∑
w :w |=φ P(w)

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by Enumeration

With no dependency information, we need 2n entries in joint dist.:

Cavity

Toothache Catch

?
cavity

L

toothache

cavity

catch catch
L

toothache
L

catch catch
L

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the events where it is true:
P(φ) =

∑
w :w |=φ P(w)

P(cavity ∨ toothache) =?
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Inference by Enumeration

With no dependency information, we need 2n entries in joint dist.:

Cavity

Toothache Catch

?
cavity

L

toothache

cavity

catch catch
L

toothache
L

catch catch
L

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the events where it is true:
P(φ) =

∑
w :w |=φ P(w)

P(cavity ∨ toothache) =
0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28
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Inference by Enumeration

With no dependency information, we need 2n entries in joint dist.:

Cavity

Toothache Catch

?
cavity

L

toothache

cavity

catch catch
L

toothache
L

catch catch
L

.108 .012

.016 .064

.072

.144

.008

.576

Can also compute conditional probabilities:

P(¬cavity |toothache) = ?
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Inference by Enumeration

With no dependency information, we need 2n entries in joint dist.:

Cavity

Toothache Catch

?
cavity

L

toothache

cavity

catch catch
L

toothache
L

catch catch
L

.108 .012

.016 .064

.072

.144

.008

.576

Can also compute conditional probabilities:

P(¬cavity |toothache) =
P(¬cavity ∧ toothache)

P(toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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Joint probability with known dependencies

Cavity

Toothache Catch

P(tootache, catch, cavity) = P(tootache|cavity)
P(catch|cavity)P(cavity)

In general,
P(x1, . . . , xn) =

∏n
i=1 P(xi |parents(Xi ))
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Burglary or Earthquake: inference from joint

.001

P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B

T

T

F

F

E

T

F

T

F

.95

.29

.001

.94

P(A|B,E)

A

T

F

.90

.05

P(J|A) A

T

F

.70

.01

P(M|A)

P(j ∧m ∧ a ∧ ¬b ∧ ¬e) = ?
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Burglary or Earthquake: inference from joint

.001

P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B

T

T

F
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E

T

F

T
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.95
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.001

.94

P(A|B,E)

A

T

F

.90

.05

P(J|A) A

T

F

.70

.01

P(M|A)

P(j ∧m ∧ a ∧ ¬b ∧ ¬e) = P(j |a)P(m|a)P(a|¬b,¬e)P(¬b)P(¬e)
= 0.9× 0.7× 0.001× 0.999× 0.998
≈ 0.00063
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Burglary or Earthquake: inference by enumeration

.001

P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B

T

T

F

F

E

T

F

T

F

.95

.29

.001

.94

P(A|B,E)

A

T

F

.90

.05

P(J|A) A

T

F

.70

.01

P(M|A)

P(B|j ,m)
= P(B, j ,m)/P(j ,m)
= αP(B, j ,m)
= α

∑
e
∑

a P(B, j ,m, e, a)
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Burglary or Earthquake: inference by enumeration
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P(B|j ,m)
= α

∑
e
∑

a P(B)P(e)P(a|B, e)P(j |a)P(m|a)
= α P(B)

∑
e P(e)

∑
a P(a|B, e)P(j |a)P(m|a)
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Burglary or Earthquake: inference by enumeration

.001

P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B

T

T

F

F

E

T

F

T

F
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.94

P(A|B,E)

A

T
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.05

P(J|A) A

T

F
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.01

P(M|A)

joining and elimination
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What if we cannot infer exactly?

Exact inference is expensive
What else can we do?
Observe random events and record outcomes to approximate
probabilities
Also called a Monte Carlo method
With ∞ samples, it is consistent
Rejection sampling: for rare events
Likelihood weighing: to avoid inconsistency
Gibbs sampling: random walk through state space
Monty Hall letter
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