CS325 Artificial Intelligence Ch 14b – Probabilistic Inference

Cengiz Günay

Spring 2013

Günay Ch 14b – Probabilistic Inference

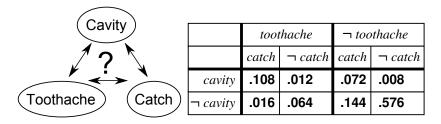
Simple queries: compute posterior marginal $P(X_i | \mathbf{E} = e)$ Conjunctive queries:

$$P(X_i, X_j | \mathbf{E} = e) = P(X_i | \mathbf{E} = e) P(X_j | X_i, \mathbf{E} = e)$$

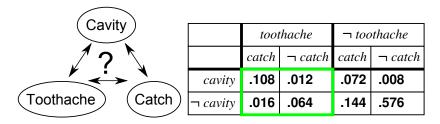
Optimal decisions: decision networks include utility information; probabilistic inference required for *P(outcome|action, evidence)*

Value of information: which evidence to seek next? Sensitivity analysis: which probability values are most critical? Explanation: why do I need a new starter motor?

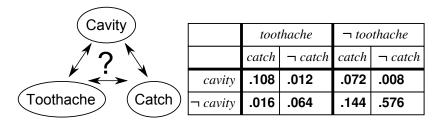
Cavity		toothache		⊐ toothache	
		catch	\neg catch	catch	\neg catch
	cavity	.108	.012	.072	.008
(Toothache) (Catch)	\neg cavity	.016	.064	.144	.576



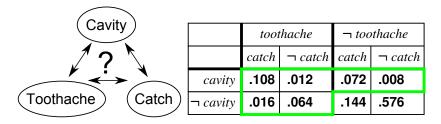
For any proposition ϕ , sum the events where it is true: $P(\phi) = \sum_{w:w\models\phi} P(w)$



For any proposition ϕ , sum the events where it is true: $P(\phi) = \sum_{w:w \models \phi} P(w)$ P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2



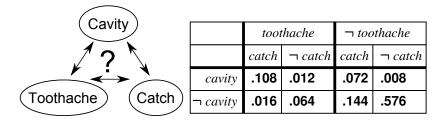
For any proposition ϕ , sum the events where it is true: $P(\phi) = \sum_{w:w \models \phi} P(w)$ $P(cavity \lor toothache) =?$



For any proposition ϕ , sum the events where it is true: $P(\phi) = \sum_{w:w \models \phi} P(w)$ $P(cavity \lor toothache) =$ 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28

Inference by Enumeration

With no dependency information, we need 2^n entries in joint dist.:



Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = ?$$

Inference by Enumeration

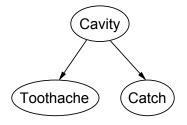
With no dependency information, we need 2^n entries in joint dist.:

Constitut					
Cavity		toothache		\neg toothache	
		catch	\neg catch	catch	\neg catch
	cavity	.108	.012	.072	.008
(Toothache) (Catch)	⊐ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

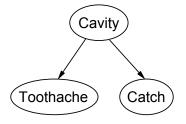
Joint probability with known dependencies



P(tootache, catch, cavity) = P(tootache|cavity)P(catch|cavity)P(cavity)

In general, $P(x_1,...,x_n) = \prod_{i=1}^n P(x_i | \text{parents}(X_i))$

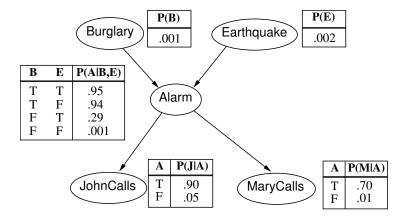
Joint probability with known dependencies



P(tootache, catch, cavity) = P(tootache|cavity)P(catch|cavity)P(cavity)

In general, $P(x_1,...,x_n) = \prod_{i=1}^n P(x_i | \text{parents}(X_i))$

Burglary or Earthquake: inference from joint

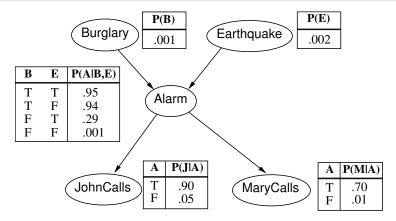


$$P(j \wedge m \wedge a \wedge \neg b \wedge \neg e) = ?$$

æ

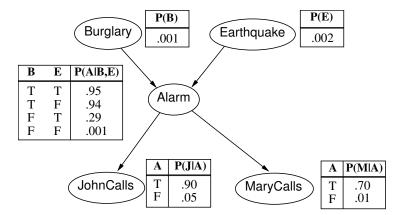
イロト イポト イヨト イヨト

Burglary or Earthquake: inference from joint



 $P(j \land m \land a \land \neg b \land \neg e) = P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$ = 0.9 × 0.7 × 0.001 × 0.999 × 0.998 ≈ 0.00063

Burglary or Earthquake: inference by enumeration



$$P(B|j, m) = P(B, j, m) / P(j, m) = \alpha P(B, j, m) = \alpha \sum_{e} \sum_{a} P(B, j, m, e, a)$$

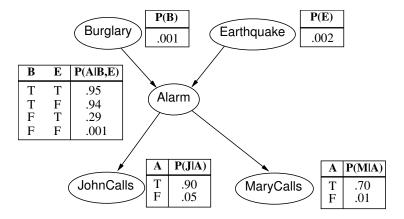
э

Burglary or Earthquake: inference by enumeration



 $P(B|j,m) = \alpha \sum_{e} \sum_{a} P(B)P(e)P(a|B,e)P(j|a)P(m|a) = \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$

Burglary or Earthquake: inference by enumeration



• joining and elimination

э

(*) *) *) *)

What if we cannot infer exactly?

- Exact inference is expensive
- What else can we do?
- Observe random events and record outcomes to approximate probabilities
- Also called a Monte Carlo method
- \bullet With ∞ samples, it is consistent
- Rejection sampling: for rare events
- Likelihood weighing: to avoid inconsistency
- Gibbs sampling: random walk through state space
- Monty Hall letter

What if we cannot infer exactly?

- Exact inference is expensive
- What else can we do?
- Observe random events and record outcomes to approximate probabilities
- Also called a Monte Carlo method
- \bullet With ∞ samples, it is consistent
- Rejection sampling: for rare events
- Likelihood weighing: to avoid inconsistency
- Gibbs sampling: random walk through state space
- Monty Hall letter

What if we cannot infer exactly?

- Exact inference is expensive
- What else can we do?
- Observe random events and record outcomes to approximate probabilities
- Also called a Monte Carlo method
- With ∞ samples, it is *consistent*
- Rejection sampling: for rare events
- Likelihood weighing: to avoid inconsistency
- Gibbs sampling: random walk through state space
- Monty Hall letter