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Planning Under Uncertainty

@ Into Thrun territory
@ Aim is to use more math, probabilities
@ achieve learnability for hard-to-program scenarios (that is, real-life)
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Entry/Exit Surveys

Exit survey: Planning

@ Why do we need to alternate between plan and execution?
@ Why do we need a belief state?

Entry survey: Planning Under Uncertainty (0.25 points of final grade)

@ What algorithm would you use to plan under uncertain conditions?

@ How do you think machine learning can be used in planning?
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So What's Wrong with Classical Planning?

1 2 3 4 Grid World:
a G
b h S: Start
c|S] G: Goal
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So What's Wrong with Classical Planning?

1 3

2 é Grid World:
E h S: Start
c|S] G: Goal
It's too slow

@ Branching factor can get large
@ Search tree gets too deep (may have loops)

@ Same states can be repeated multiple times (although can be avoided

with dynamic programming)
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Start with Certainty: Deterministic Grid World

1 2 3 4
a h +1 Reward function:

R(s)=+1Q a4

c|S

@ Remember utility values?
o State, s

@ Action, a

e Optimal policy 7(s) — a?
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Value lteration: Movement Cost

1 2 3 4 Reward function:
2 0.9 [ +1 1 Qad
b h 08| -1 R(s)=q-1 ©bd
S\ 0.7 1 0.6 —.1 everywhereelse

e Optimal policy 7(s) — a?

e ©a37?
e @ b3?
o O c4?

Value function:
V(s) < |arg max V(s')] + R(s)

where s’ is neighboring states.
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Value lteration Video

Value iteration video
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https://www.youtube.com/watch?v=8-pzJXUiXrM&feature=player_embedded

Value Iteration: Discount Factor

1 2 3 4 Reward function:
a 0.9 [ +1 +1 Q@ad
b h 08[-1] R(s)=4-1 @b4
S ‘ 0.7 | 0.6 0  everywhereelse

Recursive definition
V(s) + [arg max V(s’)} + R(s),
a
can be also written as expected reward

V(s) < argmax E [Z YRt |50 = s] .
t=0

Instead of movement cost, it uses discount factor, v, to decay future
reward.
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Value Iteration: Discount Factor

1 2 3 4 Reward function:
a 0.9 [ +1 +1 Q@ad
b h 08[-1] R(s)=4-1 @b4
S ‘ 0.7 | 0.6 0  everywhereelse

Recursive definition
V(s) « {arg max V(s’)} + R(s),
a

can be also written as expected reward

V(s) < argmax E [Z YRt |50 = s] .
t=0

Instead of movement cost, it uses discount factor, v, to decay future
reward.

@ Helps to keep it bounded < ﬁ]RmaX\
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Value lteration: Bellman Equation

General case (Bellman, 1957) is stochastic

V(s) « [arg max fyz P(s'|a)V(s')| + R(s).

@ Recursive
@ Used iteratively

@ Converges to solution

Giinay Spring 2013 10 / 17



Value lteration: Bellman Equation

General case (Bellman, 1957) is stochastic

V(s) « [arg max fyz P(s'|a)V(s')| + R(s).

@ Recursive
@ Used iteratively

@ Converges to solution

Why stochastic? Remember we want to plan under uncertainty
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Markov Decision Processes

Andrey Andreyevich @ Russian mathematician

Markov @ Stochastic processes
(1856-1922)
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Markov Decision Processes

Andrey Andreyevich @ Russian mathematician

Markov @ Stochastic processes
(1856-1922)

Markov Decision Processes (MDPs)

@ Value iteration with stochasticity
(Bellman, 1957)

Later
@ Q-learning (1989) — (next class)

Giinay Spring 2013 11 / 17



Robots in Real Life

Video: Robots gone wild
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https://www.youtube.com/watch?v=9QMZQkKuYjo&feature=player_embedded

Uncertain Movement in Grid World

+1

Reward function:
+1 Qa4

R(s)={ -1 @b

0 else

e Optimal policy 7(s) — a?
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Uncertain Movement in Grid World

1 2 3 4 Reward function: 8‘0\%
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Stochastic Value lteration

1 2 3 4 Reward function: 8‘0\%
a +1 +1 Qad 10% <€«———> 10%
b| N —1 R(s)={ -1 @bd
—.03 else

V(s) < |arg max 72 P(s'|a)V(s')| + R(s), v =1

Optimal policy 7(s) — a?
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Values and Policy Examples
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Markov Decision Processes Summary

o Fully observable: si,...,s, a1,...,am

@ Stochastic P(s|a, s)

@ Reward R(s)

o Objective max; E[Y tog7 Re |so =s] .

e Value iteration V(s)

o Converges to optimal policy, m = argmax. ..

Giinay Spring 2013 16 / 17



Partially Observable MDPs
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