CS325 Artificial Intelligence Ch. 17 – Planning Under Uncertainty

Cengiz Günay, Emory Univ.

Spring 2013

Günay

Ch. 17 – Planning Under Uncertainty

Spring 2013 1 / 17

Is This AI Course a Bit Schizo?

Classical AI vs. Machine Learning

Image: Image:

Is This AI Course a Bit Schizo? Classical AI vs. Machine Learning

- Classical AI
- Symbolic logic (propositional, first-order)
- Algorithms
- Thinking and programming

Is This AI Course a Bit Schizo? Classical AI vs. Machine Learning

- Classical AI
- Symbolic logic (propositional, first-order)
- Algorithms
- Thinking and programming

- Probabilities
- Math
- Machine Learning
- Automated methods, power of math

Spring 2013 2 / 17

Is This AI Course a Bit Schizo? Classical AI vs. Machine Learning

- Classical AI
- Symbolic logic (propositional, first-order)
- Algorithms
- Thinking and programming

- Probabilities
- Math
- Machine Learning
- Automated methods, power of math

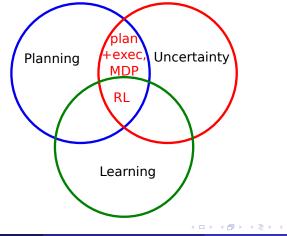
Spring 2013 2 / 17

Planning Under Uncertainty

- Into Thrun territory
- Aim is to use more math, probabilities
- achieve learnability for hard-to-program scenarios (that is, real-life)

Planning Under Uncertainty

- Into Thrun territory
- Aim is to use more math, probabilities
- achieve learnability for hard-to-program scenarios (that is, real-life)



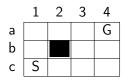
Exit survey: Planning

- Why do we need to alternate between plan and execution?
- Why do we need a belief state?

Entry survey: Planning Under Uncertainty (0.25 points of final grade)

- What algorithm would you use to plan under uncertain conditions?
- How do you think machine learning can be used in planning?

So What's Wrong with Classical Planning?

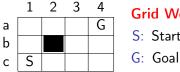


Grid World:

S: Start

G: Goal

So What's Wrong with Classical Planning?

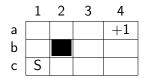


Grid World:

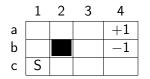
S: Start

It's too slow

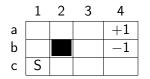
- Branching factor can get large
- Search tree gets too deep (may have loops)
- Same states can be repeated multiple times (although can be avoided with dynamic programming)



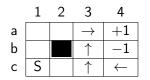
- Remember utility values?
- State, *s*
- Action, a
- Optimal policy $\pi(s) \rightarrow a$?



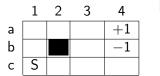
- Remember utility values?
- State, *s*
- Action, a
- Optimal policy $\pi(s) \rightarrow a$?



- Remember utility values?
- State, *s*
- Action, a
- Optimal policy $\pi(s) \rightarrow a$?
 - @ a3?
 - @ b3?
 - @ c4?



- Remember utility values?
- State, *s*
- Action, a
- Optimal policy $\pi(s) \rightarrow a$?
 - @ a3?
 - @ b3?
 - @ c4?



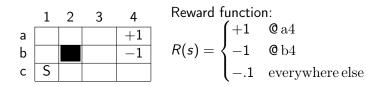
Reward function:

$$R(s) = egin{cases} +1 & @ a4 \ -1 & @ b4 \ -.1 & everywhere else \end{cases}$$

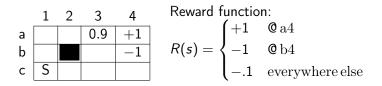
Günay

▶ < 불 ▷ 불 · 기 < 은 Spring 2013 7 / 17

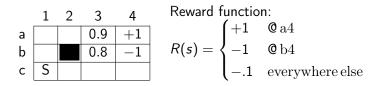
< A



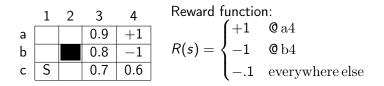
- @ a3?
- @ b3?
- @ c4?



- Optimal policy $\pi(s) \rightarrow a$?
 - @ a3?
 - @ b3?
 - @ c4?



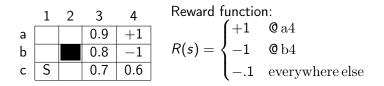
- Optimal policy $\pi(s) \rightarrow a$?
 - @ a3?
 - @ b3?
 - @ c4?



• Optimal policy $\pi(s) \rightarrow a$?

- @ a3?
- @ b3?
- @ c4?

Günay



• Optimal policy
$$\pi(s) \rightarrow a$$
?

- @ a3?
- @ b3?
- @ c4?

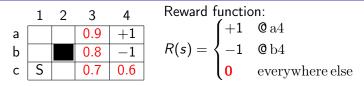
Value function:

$$V(s) \leftarrow \left[\arg \max_{a} V(s') \right] + R(s)$$

where s' is neighboring states.

Value iteration video

Value Iteration: Discount Factor



Recursive definition

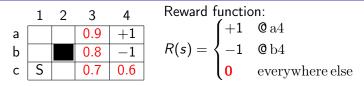
$$V(s) \leftarrow \left[rg\max_{a} V(s')
ight] + R(s) \, ,$$

can be also written as expected reward

$$V(s) \leftarrow \arg \max_{\pi} E\left[\sum_{t=0}^{\infty} \gamma^t R_t \mid s_o = s
ight].$$

Instead of movement cost, it uses discount factor, $\gamma,$ to decay future reward.

Value Iteration: Discount Factor



Recursive definition

$$V(s) \leftarrow \left[rg\max_{a} V(s')
ight] + R(s) \, ,$$

can be also written as expected reward

$$V(s) \leftarrow rg\max_{\pi} E\left[\sum_{t=0}^{\infty} \gamma^t R_t \mid s_o = s
ight] \,.$$

Instead of movement cost, it uses discount factor, $\gamma,$ to decay future reward.

 \bullet Helps to keep it bounded $\leq \frac{1}{1-\gamma}|\textit{R}_{\max}|$

Spring 2013 9 / 17

General case (Bellman, 1957) is stochastic

$$V(s) \leftarrow \left[\arg \max_{a} \gamma \sum_{s'} P(s'|a) V(s') \right] + R(s).$$

- Recursive
- Used iteratively
- Converges to solution

General case (Bellman, 1957) is stochastic

$$V(s) \leftarrow \left[\arg \max_{a} \gamma \sum_{s'} P(s'|a) V(s') \right] + R(s).$$

- Recursive
- Used iteratively
- Converges to solution

Why stochastic? Remember we want to plan under uncertainty

Andrey Andreyevich Markov (1856–1922)

- Russian mathematician
- Stochastic processes

Andrey Andreyevich Markov (1856–1922)

- Russian mathematician
- Stochastic processes

Markov Decision Processes (MDPs)

• Value iteration with stochasticity (Bellman, 1957)

Spring 2013 11 / 17

Andrey Andreyevich Markov (1856–1922)

- Russian mathematician
- Stochastic processes

Markov Decision Processes (MDPs)

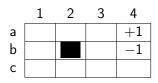
• Value iteration with stochasticity (Bellman, 1957)

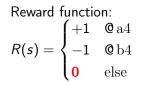
Later

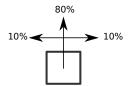
• Q-learning (1989) \rightarrow (next class)

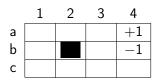
Spring 2013 11 / 17

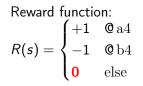
Video: Robots gone wild

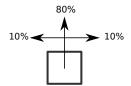




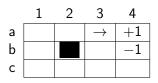


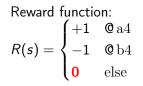


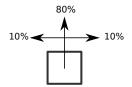




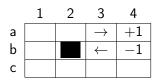
- Optimal policy $\pi(s) \rightarrow a$?
 - @ a3?
 - @ b3?
 - @ c4?

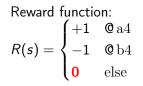


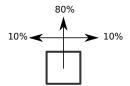




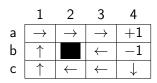
- Optimal policy $\pi(s) \rightarrow a$?
 - @ a3?
 - @ b3?
 - @ c4?

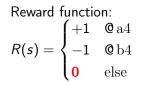


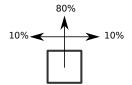




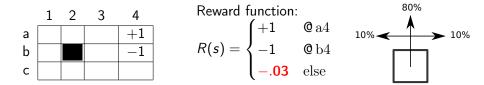
- Optimal policy $\pi(s) \rightarrow a$?
 - @ a3?
 - @ b3?
 - @ c4?



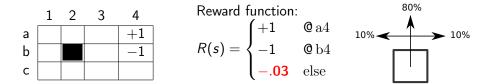




- Optimal policy $\pi(s) \rightarrow a$?
 - @ a3?
 - @ b3?
 - @ c4?

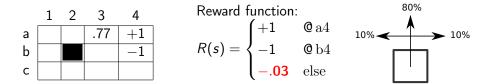


$$V(s) \leftarrow \left[\arg \max_{a} \gamma \sum_{s'} P(s'|a) V(s') \right] + R(s), \ \gamma = 1$$



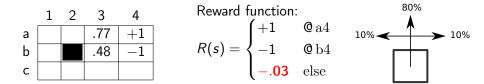
$$V(s) \leftarrow \left[\arg \max_{a} \gamma \sum_{s'} P(s'|a) V(s') \right] + R(s), \ \gamma = 1$$

- @ a3?
- @ b3?



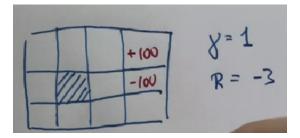
$$V(s) \leftarrow \left[\arg \max_{a} \gamma \sum_{s'} P(s'|a) V(s') \right] + R(s), \ \gamma = 1$$

- @ a3?
- @ b3?



$$V(s) \leftarrow \left[\arg \max_{a} \gamma \sum_{s'} P(s'|a) V(s') \right] + R(s), \ \gamma = 1$$

- @ a3?
- @ b3?

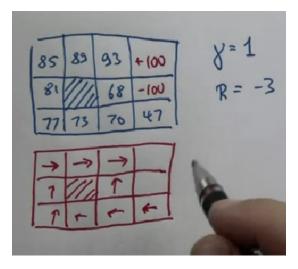


Günay

Ch. 17 – Planning Under Uncertainty

Spring 2013 15 / 17

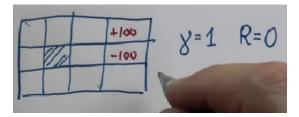
< ロト < 四



Günay

Spring 2013 15 / 17

< 行い

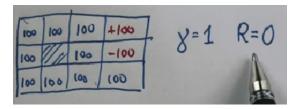


Günay

Ch. 17 – Planning Under Uncertainty

Spring 2013 15 / 17

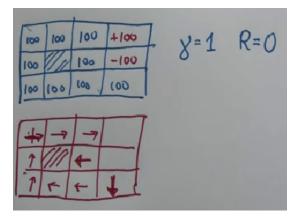
< A



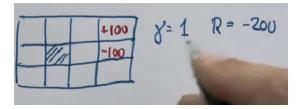
Günay

Spring 2013 15 / 17

< 行い



< A

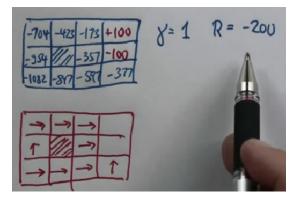


Günay

Ch. 17 – Planning Under Uncertainty

Spring 2013 15 / 17

< AP



Spring 2013 15 / 17

< A

- Fully observable: $s_1, \ldots, s_n \quad a_1, \ldots, a_m$
- Stochastic P(s'|a, s)
- Reward R(s)
- Objective max_{π} $E\left[\sum_{t=0}^{\infty}\gamma^{t}R_{t} \mid s_{o}=s\right]$.
- Value iteration V(s)
- Converges to optimal policy, $\pi = \arg \max \ldots$

Partially Observable MDPs

Günay

Ch. 17 – Planning Under Uncertainty

Spring 2013 17

• • • • • • • •