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Is This AI Course a Bit Schizo?
Classical AI vs. Machine Learning

Classical AI
Symbolic logic (propositional, first-order)
Algorithms
Thinking and programming

Probabilities
Math
Machine Learning
Automated methods, power of math
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Planning Under Uncertainty

Into Thrun territory
Aim is to use more math, probabilities
achieve learnability for hard-to-program scenarios (that is, real-life)

Planning Uncertainty

Learning

RL

plan
+exec,
MDP
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Entry/Exit Surveys

Exit survey: Planning
Why do we need to alternate between plan and execution?
Why do we need a belief state?

Entry survey: Planning Under Uncertainty (0.25 points of final grade)
What algorithm would you use to plan under uncertain conditions?
How do you think machine learning can be used in planning?
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So What’s Wrong with Classical Planning?

1 2 3 4
a G
b xt
c S

Grid World:
S: Start
G: Goal

It’s too slow
Branching factor can get large
Search tree gets too deep (may have loops)
Same states can be repeated multiple times (although can be avoided
with dynamic programming)
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Start with Certainty: Deterministic Grid World

1 2 3 4
a

→

+1
b xt

↑ −1

c S

↑ ←

Reward function:
R(s) = +1 @ a4

Remember utility values?
State, s
Action, a
Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?
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Start with Certainty: Deterministic Grid World

1 2 3 4
a → +1
b xt ↑ −1
c S ↑ ←

Reward function:
R(s) = +1 @ a4

Remember utility values?
State, s
Action, a
Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?
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Value Iteration: Movement Cost

1 2 3 4
a

0.9

+1
b xt

0.8

−1
c S

0.7 0.6

Reward function:

R(s) =


+1 @ a4
−1 @ b4
−.1 everywhere else

Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Value function:
V (s)←

[
argmax

a
V (s ′)

]
+ R(s)

where s ′ is neighboring states.
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Value Iteration Video

Value iteration video
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Value Iteration: Discount Factor

1 2 3 4
a 0.9 +1
b xt 0.8 −1
c S 0.7 0.6

Reward function:

R(s) =


+1 @ a4
−1 @ b4
0 everywhere else

Recursive definition

V (s)←
[
argmax

a
V (s ′)

]
+ R(s) ,

can be also written as expected reward

V (s)← argmax
π

E

[ ∞∑
t=0

γtRt |so = s

]
.

Instead of movement cost, it uses discount factor, γ, to decay future
reward.

Helps to keep it bounded ≤ 1
1−γ |Rmax|
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Value Iteration: Bellman Equation

General case (Bellman, 1957) is stochastic

V (s)←

[
argmax

a
γ
∑
s′

P(s ′|a)V (s ′)

]
+ R(s) .

Recursive
Used iteratively
Converges to solution

Why stochastic? Remember we want to plan under uncertainty
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Markov Decision Processes

Andrey Andreyevich
Markov

(1856–1922)

Russian mathematician
Stochastic processes

Markov Decision Processes (MDPs)
Value iteration with stochasticity
(Bellman, 1957)

Later
Q-learning (1989) → (next class)
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Robots in Real Life

Video: Robots gone wild
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Uncertain Movement in Grid World

1 2 3 4
a

→ → →

+1
b

↑

xt

←

−1
c

↑ ← ← ↓

Reward function:

R(s) =


+1 @ a4
−1 @ b4
0 else

80%

10%10%

Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?
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Uncertain Movement in Grid World

1 2 3 4
a → → → +1
b ↑ xt ← −1
c ↑ ← ← ↓

Reward function:

R(s) =


+1 @ a4
−1 @ b4
0 else

80%

10%10%
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Stochastic Value Iteration

1 2 3 4
a

.77

+1
b xt

.48

−1
c

Reward function:

R(s) =


+1 @ a4
−1 @ b4
−.03 else

80%

10%10%

V (s)←

[
argmax

a
γ
∑
s′

P(s ′|a)V (s ′)

]
+ R(s), γ = 1

Optimal policy π(s)→ a?

@ a3?
@ b3?
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Values and Policy Examples
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Markov Decision Processes Summary

Fully observable: s1, . . . , sn a1, . . . , am

Stochastic P(s ′|a, s)
Reward R(s)
Objective maxπ E [

∑∞
t=0 γ

tRt |so = s ] .
Value iteration V (s)
Converges to optimal policy, π = argmax . . .
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Partially Observable MDPs
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