
CS325 Artificial Intelligence
Ch. 17 – Planning Under Uncertainty

Cengiz Günay, Emory Univ.

Spring 2013

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 1 / 17

http://www.imdb.com/title/tt0081505/

Is This AI Course a Bit Schizo?
Classical AI vs. Machine Learning

Classical AI
Symbolic logic (propositional, first-order)
Algorithms
Thinking and programming

Probabilities
Math
Machine Learning
Automated methods, power of math

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 2 / 17

Is This AI Course a Bit Schizo?
Classical AI vs. Machine Learning

Classical AI
Symbolic logic (propositional, first-order)
Algorithms
Thinking and programming

Probabilities
Math
Machine Learning
Automated methods, power of math

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 2 / 17

Is This AI Course a Bit Schizo?
Classical AI vs. Machine Learning

Classical AI
Symbolic logic (propositional, first-order)
Algorithms
Thinking and programming

Probabilities
Math
Machine Learning
Automated methods, power of math

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 2 / 17

Is This AI Course a Bit Schizo?
Classical AI vs. Machine Learning

Classical AI
Symbolic logic (propositional, first-order)
Algorithms
Thinking and programming

Probabilities
Math
Machine Learning
Automated methods, power of math

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 2 / 17

Planning Under Uncertainty

Into Thrun territory
Aim is to use more math, probabilities
achieve learnability for hard-to-program scenarios (that is, real-life)

Planning Uncertainty

Learning

RL

plan
+exec,
MDP

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 3 / 17

Planning Under Uncertainty

Into Thrun territory
Aim is to use more math, probabilities
achieve learnability for hard-to-program scenarios (that is, real-life)

Planning Uncertainty

Learning

RL

plan
+exec,
MDP

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 3 / 17

Entry/Exit Surveys

Exit survey: Planning
Why do we need to alternate between plan and execution?
Why do we need a belief state?

Entry survey: Planning Under Uncertainty (0.25 points of final grade)
What algorithm would you use to plan under uncertain conditions?
How do you think machine learning can be used in planning?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 4 / 17

So What’s Wrong with Classical Planning?

1 2 3 4
a G
b xt
c S

Grid World:
S: Start
G: Goal

It’s too slow
Branching factor can get large
Search tree gets too deep (may have loops)
Same states can be repeated multiple times (although can be avoided
with dynamic programming)

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 5 / 17

So What’s Wrong with Classical Planning?

1 2 3 4
a G
b xt
c S

Grid World:
S: Start
G: Goal

It’s too slow
Branching factor can get large
Search tree gets too deep (may have loops)
Same states can be repeated multiple times (although can be avoided
with dynamic programming)

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 5 / 17

Start with Certainty: Deterministic Grid World

1 2 3 4
a

→

+1
b xt

↑ −1

c S

↑ ←

Reward function:
R(s) = +1 @ a4

Remember utility values?
State, s
Action, a
Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 6 / 17

Start with Certainty: Deterministic Grid World

1 2 3 4
a

→

+1
b xt

↑

−1
c S

↑ ←

Reward function:
R(s) = +1 @ a4

Remember utility values?
State, s
Action, a
Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 6 / 17

Start with Certainty: Deterministic Grid World

1 2 3 4
a

→

+1
b xt

↑

−1
c S

↑ ←

Reward function:
R(s) = +1 @ a4

Remember utility values?
State, s
Action, a
Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 6 / 17

Start with Certainty: Deterministic Grid World

1 2 3 4
a → +1
b xt ↑ −1
c S ↑ ←

Reward function:
R(s) = +1 @ a4

Remember utility values?
State, s
Action, a
Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 6 / 17

Value Iteration: Movement Cost

1 2 3 4
a

0.9

+1
b xt

0.8

−1
c S

0.7 0.6

Reward function:

R(s) =


+1 @ a4
−1 @ b4
−.1 everywhere else

Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Value function:
V (s)←

[
argmax

a
V (s ′)

]
+ R(s)

where s ′ is neighboring states.

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 7 / 17

Value Iteration: Movement Cost

1 2 3 4
a

0.9

+1
b xt

0.8

−1
c S

0.7 0.6

Reward function:

R(s) =


+1 @ a4
−1 @ b4
−.1 everywhere else

Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Value function:
V (s)←

[
argmax

a
V (s ′)

]
+ R(s)

where s ′ is neighboring states.

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 7 / 17

Value Iteration: Movement Cost

1 2 3 4
a 0.9 +1
b xt

0.8

−1
c S

0.7 0.6

Reward function:

R(s) =


+1 @ a4
−1 @ b4
−.1 everywhere else

Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Value function:
V (s)←

[
argmax

a
V (s ′)

]
+ R(s)

where s ′ is neighboring states.

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 7 / 17

Value Iteration: Movement Cost

1 2 3 4
a 0.9 +1
b xt 0.8 −1
c S

0.7 0.6

Reward function:

R(s) =


+1 @ a4
−1 @ b4
−.1 everywhere else

Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Value function:
V (s)←

[
argmax

a
V (s ′)

]
+ R(s)

where s ′ is neighboring states.

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 7 / 17

Value Iteration: Movement Cost

1 2 3 4
a 0.9 +1
b xt 0.8 −1
c S 0.7 0.6

Reward function:

R(s) =


+1 @ a4
−1 @ b4
−.1 everywhere else

Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Value function:
V (s)←

[
argmax

a
V (s ′)

]
+ R(s)

where s ′ is neighboring states.

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 7 / 17

Value Iteration: Movement Cost

1 2 3 4
a 0.9 +1
b xt 0.8 −1
c S 0.7 0.6

Reward function:

R(s) =


+1 @ a4
−1 @ b4
−.1 everywhere else

Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Value function:
V (s)←

[
argmax

a
V (s ′)

]
+ R(s)

where s ′ is neighboring states.

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 7 / 17

Value Iteration Video

Value iteration video

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 8 / 17

https://www.youtube.com/watch?v=8-pzJXUiXrM&feature=player_embedded

Value Iteration: Discount Factor

1 2 3 4
a 0.9 +1
b xt 0.8 −1
c S 0.7 0.6

Reward function:

R(s) =


+1 @ a4
−1 @ b4
0 everywhere else

Recursive definition

V (s)←
[
argmax

a
V (s ′)

]
+ R(s) ,

can be also written as expected reward

V (s)← argmax
π

E

[∞∑
t=0

γtRt |so = s

]
.

Instead of movement cost, it uses discount factor, γ, to decay future
reward.

Helps to keep it bounded ≤ 1
1−γ |Rmax|

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 9 / 17

Value Iteration: Discount Factor

1 2 3 4
a 0.9 +1
b xt 0.8 −1
c S 0.7 0.6

Reward function:

R(s) =


+1 @ a4
−1 @ b4
0 everywhere else

Recursive definition

V (s)←
[
argmax

a
V (s ′)

]
+ R(s) ,

can be also written as expected reward

V (s)← argmax
π

E

[∞∑
t=0

γtRt |so = s

]
.

Instead of movement cost, it uses discount factor, γ, to decay future
reward.

Helps to keep it bounded ≤ 1
1−γ |Rmax|

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 9 / 17

Value Iteration: Bellman Equation

General case (Bellman, 1957) is stochastic

V (s)←

[
argmax

a
γ
∑
s′

P(s ′|a)V (s ′)

]
+ R(s) .

Recursive
Used iteratively
Converges to solution

Why stochastic? Remember we want to plan under uncertainty

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 10 / 17

Value Iteration: Bellman Equation

General case (Bellman, 1957) is stochastic

V (s)←

[
argmax

a
γ
∑
s′

P(s ′|a)V (s ′)

]
+ R(s) .

Recursive
Used iteratively
Converges to solution

Why stochastic? Remember we want to plan under uncertainty

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 10 / 17

Markov Decision Processes

Andrey Andreyevich
Markov

(1856–1922)

Russian mathematician
Stochastic processes

Markov Decision Processes (MDPs)
Value iteration with stochasticity
(Bellman, 1957)

Later
Q-learning (1989) → (next class)

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 11 / 17

Markov Decision Processes

Andrey Andreyevich
Markov

(1856–1922)

Russian mathematician
Stochastic processes

Markov Decision Processes (MDPs)
Value iteration with stochasticity
(Bellman, 1957)

Later
Q-learning (1989) → (next class)

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 11 / 17

Markov Decision Processes

Andrey Andreyevich
Markov

(1856–1922)

Russian mathematician
Stochastic processes

Markov Decision Processes (MDPs)
Value iteration with stochasticity
(Bellman, 1957)

Later
Q-learning (1989) → (next class)

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 11 / 17

Robots in Real Life

Video: Robots gone wild

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 12 / 17

https://www.youtube.com/watch?v=9QMZQkKuYjo&feature=player_embedded

Uncertain Movement in Grid World

1 2 3 4
a

→ → →

+1
b

↑

xt

←

−1
c

↑ ← ← ↓

Reward function:

R(s) =


+1 @ a4
−1 @ b4
0 else

80%

10%10%

Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 13 / 17

Uncertain Movement in Grid World

1 2 3 4
a

→ → →

+1
b

↑

xt

←

−1
c

↑ ← ← ↓

Reward function:

R(s) =


+1 @ a4
−1 @ b4
0 else

80%

10%10%

Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 13 / 17

Uncertain Movement in Grid World

1 2 3 4
a

→ →

→ +1
b

↑

xt

←

−1
c

↑ ← ← ↓

Reward function:

R(s) =


+1 @ a4
−1 @ b4
0 else

80%

10%10%

Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 13 / 17

Uncertain Movement in Grid World

1 2 3 4
a

→ →

→ +1
b

↑

xt ← −1
c

↑ ← ← ↓

Reward function:

R(s) =


+1 @ a4
−1 @ b4
0 else

80%

10%10%

Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 13 / 17

Uncertain Movement in Grid World

1 2 3 4
a → → → +1
b ↑ xt ← −1
c ↑ ← ← ↓

Reward function:

R(s) =


+1 @ a4
−1 @ b4
0 else

80%

10%10%

Optimal policy π(s)→ a?

@ a3?
@ b3?
@ c4?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 13 / 17

Stochastic Value Iteration

1 2 3 4
a

.77

+1
b xt

.48

−1
c

Reward function:

R(s) =


+1 @ a4
−1 @ b4
−.03 else

80%

10%10%

V (s)←

[
argmax

a
γ
∑
s′

P(s ′|a)V (s ′)

]
+ R(s), γ = 1

Optimal policy π(s)→ a?

@ a3?
@ b3?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 14 / 17

Stochastic Value Iteration

1 2 3 4
a

.77

+1
b xt

.48

−1
c

Reward function:

R(s) =


+1 @ a4
−1 @ b4
−.03 else

80%

10%10%

V (s)←

[
argmax

a
γ
∑
s′

P(s ′|a)V (s ′)

]
+ R(s), γ = 1

Optimal policy π(s)→ a?

@ a3?
@ b3?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 14 / 17

Stochastic Value Iteration

1 2 3 4
a .77 +1
b xt

.48

−1
c

Reward function:

R(s) =


+1 @ a4
−1 @ b4
−.03 else

80%

10%10%

V (s)←

[
argmax

a
γ
∑
s′

P(s ′|a)V (s ′)

]
+ R(s), γ = 1

Optimal policy π(s)→ a?

@ a3?
@ b3?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 14 / 17

Stochastic Value Iteration

1 2 3 4
a .77 +1
b xt .48 −1
c

Reward function:

R(s) =


+1 @ a4
−1 @ b4
−.03 else

80%

10%10%

V (s)←

[
argmax

a
γ
∑
s′

P(s ′|a)V (s ′)

]
+ R(s), γ = 1

Optimal policy π(s)→ a?

@ a3?
@ b3?

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 14 / 17

Values and Policy Examples

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 15 / 17

Values and Policy Examples

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 15 / 17

Values and Policy Examples

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 15 / 17

Values and Policy Examples

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 15 / 17

Values and Policy Examples

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 15 / 17

Values and Policy Examples

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 15 / 17

Values and Policy Examples

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 15 / 17

Markov Decision Processes Summary

Fully observable: s1, . . . , sn a1, . . . , am

Stochastic P(s ′|a, s)
Reward R(s)
Objective maxπ E [

∑∞
t=0 γ

tRt |so = s] .
Value iteration V (s)
Converges to optimal policy, π = argmax . . .

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 16 / 17

Partially Observable MDPs

Günay Ch. 17 – Planning Under Uncertainty Spring 2013 17 / 17

