Giinay

CS325 Artificial Intelligence

Ch. 17 = Planning Under Uncertainty

Cengiz Giinay, Emory Univ.

Spring 2013

Spring 2013

1/17


http://www.imdb.com/title/tt0081505/

Is This Al Course a Bit Schizo?

Classical Al vs. Machine Learning

Giinay Spring 2013 2 /17



Is This Al Course a Bit Schizo?

Classical Al vs. Machine Learning

Giinay

e Classical Al
@ Symbolic logic (propositional, first-order)
o Algorithms

@ Thinking and programming

Spring 2013

2 /17



Is This Al Course a Bit Schizo?

Classical Al vs. Machine Learning

Classical Al
Symbolic logic (propositional, first-order)
Algorithms

Thinking and programming

Probabilities

Math

Machine Learning

Automated methods, power of math

Giinay Spring 2013

2 /17



Is This Al Course a Bit Schizo?

Classical Al vs. Machine Learning

Giinay

o Classical Al

e Symbolic logic (propositional, first-order)
@ Algorithms

'e Thinking and programming

Probabilities
Math

Machine Learning

Automated methods, power of math

Spring 2013

2 /17



Planning Under Uncertainty

@ Into Thrun territory
@ Aim is to use more math, probabilities
@ achieve learnability for hard-to-program scenarios (that is, real-life)

Giinay Spring 2013 3/17



Planning Under Uncertainty

@ Into Thrun territory
@ Aim is to use more math, probabilities
@ achieve learnability for hard-to-program scenarios (that is, real-life)

Giinay Spring 2013 3/17



Entry/Exit Surveys

Exit survey: Planning

@ Why do we need to alternate between plan and execution?
@ Why do we need a belief state?

Entry survey: Planning Under Uncertainty (0.25 points of final grade)

@ What algorithm would you use to plan under uncertain conditions?

@ How do you think machine learning can be used in planning?

Giinay Spring 2013 4 /17



So What's Wrong with Classical Planning?

1 2 3 4 Grid World:
a G
b h S: Start
c|S] G: Goal

Giinay Spring 2013 5 /17



So What's Wrong with Classical Planning?

1 3

2 é Grid World:
E h S: Start
c|S] G: Goal
It's too slow

@ Branching factor can get large
@ Search tree gets too deep (may have loops)

@ Same states can be repeated multiple times (although can be avoided

with dynamic programming)

Giinay

Spring 2013

5 /17



Start with Certainty: Deterministic Grid World

1 2 3 4
a h +1 Reward function:

R(s)=+1Q a4

c|S

@ Remember utility values?
o State, s

@ Action, a

e Optimal policy 7(s) — a?

Giinay Spring 2013 6 /17



Start with Certainty: Deterministic Grid World

1 2 3 4
a h +1 Reward function:

-1 R(s)=+1Q a4

c|S

@ Remember utility values?
o State, s

@ Action, a

e Optimal policy 7(s) — a?

Giinay Spring 2013 6 /17



Start with Certainty: Deterministic Grid World

1 2 3 4
a h +1 Reward function:

-1 R(s)=+1Q a4

c|S

@ Remember utility values?
o State, s

@ Action, a

e Optimal policy 7(s) — a?

e ©a3?
e @ b3?
o O c4?

Giinay Spring 2013 6 /17



Start with Certainty: Deterministic Grid World

1 2 3 4
a — | +1 Reward function:
b h T -1 R(s)=+1Q a4
c|S]| 1T ]«

@ Remember utility values?
o State, s

@ Action, a

e Optimal policy 7(s) — a?

e ©a3?
e @ b3?
o O c4?

Giinay Spring 2013 6 /17



Value lteration: Movement Cost

1 2 3 4 Reward function:
a 11 +1 Qa4
b h —1| R(s)=4-1 0Ob4
S ‘ —.1 everywhereelse

Giinay Spring 2013 7/ 17



Value lteration: Movement Cost

1 2 3 4 Reward function:
a 11 +1 Qa4
b h —1| R(s)=4-1 0Ob4
S ‘ —.1 everywhereelse

e Optimal policy 7(s) — a?

e 0@ a37
e @ b3?
o O c4?

Giinay Spring 2013 7/ 17



Value lteration: Movement Cost

1 2 3 4 Reward function:
2 0.9 [ +1 1 Qad
b h 1 R(s)=¢—-1 @b4
S \ —.1 everywhereelse

e Optimal policy 7(s) — a?

e ©a37?
e @ b3?
o O c4?

Giinay Spring 2013 7/ 17



Value lteration: Movement Cost

1 2 3 4 Reward function:
2 0.9 [ +1 1 Qad
b h 08| -1 R(s)=q-1 ©bd
S \ —.1 everywhereelse

e Optimal policy 7(s) — a?

e ©a37?
e @ b3?
o O c4?

Giinay Spring 2013 7/ 17



Value lteration: Movement Cost

1 2 3 4 Reward function:
2 0.9 [ +1 1 Qad
b h 08| -1 R(s)=q-1 ©bd
S\ 0.7 1 0.6 —.1 everywhereelse

e Optimal policy 7(s) — a?

e ©a37?
e @ b3?
o O c4?

Giinay Spring 2013 7/ 17



Value lteration: Movement Cost

1 2 3 4 Reward function:
2 0.9 [ +1 1 Qad
b h 08| -1 R(s)=q-1 ©bd
S\ 0.7 1 0.6 —.1 everywhereelse

e Optimal policy 7(s) — a?

e ©a37?
e @ b3?
o O c4?

Value function:
V(s) < |arg max V(s')] + R(s)

where s’ is neighboring states.

Giinay Spring 2013 7/ 17



Value lteration Video

Value iteration video

Giinay Spring 2013 8 /17


https://www.youtube.com/watch?v=8-pzJXUiXrM&feature=player_embedded

Value Iteration: Discount Factor

1 2 3 4 Reward function:
a 0.9 [ +1 +1 Q@ad
b h 08[-1] R(s)=4-1 @b4
S ‘ 0.7 | 0.6 0  everywhereelse

Recursive definition
V(s) + [arg max V(s’)} + R(s),
a
can be also written as expected reward

V(s) < argmax E [Z YRt |50 = s] .
t=0

Instead of movement cost, it uses discount factor, v, to decay future
reward.

Giina Spring 2013 9 /17
y



Value Iteration: Discount Factor

1 2 3 4 Reward function:
a 0.9 [ +1 +1 Q@ad
b h 08[-1] R(s)=4-1 @b4
S ‘ 0.7 | 0.6 0  everywhereelse

Recursive definition
V(s) « {arg max V(s’)} + R(s),
a

can be also written as expected reward

V(s) < argmax E [Z YRt |50 = s] .
t=0

Instead of movement cost, it uses discount factor, v, to decay future
reward.

@ Helps to keep it bounded < ﬁ]RmaX\

Giina Spring 2013 9 /17
y



Value lteration: Bellman Equation

General case (Bellman, 1957) is stochastic

V(s) « [arg max fyz P(s'|a)V(s')| + R(s).

@ Recursive
@ Used iteratively

@ Converges to solution

Giinay Spring 2013 10 / 17



Value lteration: Bellman Equation

General case (Bellman, 1957) is stochastic

V(s) « [arg max fyz P(s'|a)V(s')| + R(s).

@ Recursive
@ Used iteratively

@ Converges to solution

Why stochastic? Remember we want to plan under uncertainty

Giinay Spring 2013 10 / 17



Markov Decision Processes

Andrey Andreyevich @ Russian mathematician

Markov @ Stochastic processes
(1856-1922)

Giinay Spring 2013 11 / 17



Markov Decision Processes

Andrey Andreyevich @ Russian mathematician

Markov @ Stochastic processes
(1856-1922)

Markov Decision Processes (MDPs)

@ Value iteration with stochasticity
(Bellman, 1957)

Giinay Spring 2013 11 / 17



Markov Decision Processes

Andrey Andreyevich @ Russian mathematician

Markov @ Stochastic processes
(1856-1922)

Markov Decision Processes (MDPs)

@ Value iteration with stochasticity
(Bellman, 1957)

Later
@ Q-learning (1989) — (next class)

Giinay Spring 2013 11 / 17



Robots in Real Life

Video: Robots gone wild

Giinay Spring 2013 12 /17


https://www.youtube.com/watch?v=9QMZQkKuYjo&feature=player_embedded

Uncertain Movement in Grid World

+1

Reward function:
+1 Qa4

R(s)={ -1 @b

0 else

e Optimal policy 7(s) — a?

Giinay

80%

A

10% €———3 10%

Spring 2013

13 / 17



Uncertain Movement in Grid World

1 2 3 4 Reward function: 8‘0\%
a 41 +1 Qa4 Lo% Lo
|| —1 R(s)=4 -1 @b4 >
¢ 0 else

e Optimal policy 7(s) — a?

e ©a3?
e @ b3?
o O c4?

Giinay Spring 2013 13 / 17



Uncertain Movement in Grid World

1 2 3 4 Reward function: 8‘0\%
a 1 +1 Qa4 Lo% Lo
|| —1 R(s)=4 -1 @b4 >
¢ 0 else

e Optimal policy 7(s) — a?

e ©a3?
e @ b3?
o O c4?

Giinay Spring 2013 13 / 17



Uncertain Movement in Grid World

80%

1 2 3 4 Reward function: A\
a — | +1 +1 Qa4 10% <€——— > 10%
- — | 1 R(s)=< -1 @b4
c 0 else

e Optimal policy 7(s) — a?

e ©a3?
e @ b3?
o O c4?

Giinay Spring 2013 13 / 17



Uncertain Movement in Grid World

1 2 3 4 Reward function: 8‘0\%
a| = | = | =] +1 +1 Qa4 Lo% Lo
b 1 Il < |1 R(s)=14 -1 @b4 ?
S Rl R 0 else

e Optimal policy 7(s) — a?

e ©a3?
e @ b3?
o O c4?

Giinay Spring 2013 13 / 17



Stochastic Value lteration

1 2 3 4 Reward function: 8‘0\%
a +1 +1 Qad 10% <€«———> 10%
b| N —1 R(s)={ -1 @bd
—.03 else

V(s) < |arg max 72 P(s'|a)V(s')| + R(s), v =1

Optimal policy 7(s) — a?

Giinay Spring 2013 14 / 17



Stochastic Value lteration

1 2 3 4 Reward function:
a +1 +1
|| -1 R(s)=1{ -1
—.03

Qa4
O b4

else

80%

A

10% <€———> 10%

V(s) < |arg max 72 P(s'|a)V(s')| + R(s), v =1

Optimal policy m(s) — a?
o @ a37?
e ©b3?

Giinay

Spring 2013 14 / 17



Stochastic Value lteration

1 2 3 4 Reward function: 80\%
a 7741 11 ewm . _ o
| | —1 R(s)={ -1 @bd
—.03 else

V(s) < |arg max 72 P(s'|a)V(s')| + R(s), v =1

Optimal policy m(s) — a?
o @ a37?
e ©b3?

Giinay Spring 2013 14 / 17



Stochastic Value lteration

1 2 3 4 Reward function: 80\%
a J7 | +1 +1 Qa4 0% | Lo
B 4] -1 R(s)=¢—-1 @b4
—.03 else

V(s) < |arg max 72 P(s'|a)V(s')| + R(s), v =1

Optimal policy m(s) — a?
o 0@ a37?
e ©b3?

Giinay Spring 2013 14 / 17



Values and Policy Examples

Giinay

Spring 2013

D¢

15 / 17



Values and Policy Examples

DQAC
Giinay Spring 2013 15 / 17



Values and Policy Examples

| _ + o0 8=1 on

Giinay Spring 2013 15 / 17



Values and Policy Examples

o = - = DA
Giinay Spring 2013 15 / 17



Values and Policy Examples

Giinay

E 9HAC
Spring 2013

15 / 17



Values and Policy Examples

Giinay Spring 2013 15 / 17



Values and Policy Examples

o = - = DA
Giinay Spring 2013 15 / 17



Markov Decision Processes Summary

o Fully observable: si,...,s, a1,...,am

@ Stochastic P(s|a, s)

@ Reward R(s)

o Objective max; E[Y tog7 Re |so =s] .

e Value iteration V(s)

o Converges to optimal policy, m = argmax. ..

Giinay Spring 2013 16 / 17



Partially Observable MDPs

Giinay Spring 2013 17 / 17



