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Overview

Data-driven
Lots of data (financial, internet, biology, etc.)?
But also problems too difficult reflexive reasoning

Machine learning is inspired by the brain and neurons

Types of machine learning:
supervised (this and next class)
unsupervised (next week)
reinforcement (later)
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Who uses Machine Learning (ML)?

Compared to Bayes Nets:

Bayes Nets require full knowledge
ML is data-driven. How about sampling Bayes Nets?

Companies use ML for?

Product recommendations: Amazon, Netflix (had an ML
contest)
Typing: Swype keyboard, learning word suggestions
Pattern recognition: handwriting, OCR, audio
Web mining: Google page rank algorithm
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Stanford’s Stanley
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https://www.youtube.com/watch?v=Q1xFdQfq5Fk&feature=player_embedded


ML Taxonomy

Learn what?

parameters, structure, hidden concepts
How? from labels (supervised), from nature of data

(unsupervised), from environmental feedback
(reinforcement)

Why? future prediction (stock market), diagnosis (Bayes
Nets), summarize (Google search), classify (digit
recognition)

Types: passive/active, online/offline
Based on output: classification vs. regression
Based on behavior: generative vs. discriminative
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Where did it all start?

Inputs on dendrites, outputs from axon

the perceptron
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Let’s use the perceptron

Separate Tom from Jerry based on car preference?

Tom Jerry
Trucks 1 0
Sedans 0 1
Hybrids 0 1
SUVs 1 0

×


W1
W2
W3
W4

 ⇒∑
i IiWi =?
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In general. . .

ML learns mapping between features and labels:

x1 . . . xn → yn

Can be applied to different problems as long as can be
vectorized (e.g., images)
Need multiple examples (or samples)
Question is to find function for each sample, m:

f (Xm) = Ym
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Problem with choosing type of function: complexity

Occam’s razor:

prefer simplest solution
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