CS325 Artificial Intelligence
 Chs. 18 \& 4 - Supervised Machine Learning (cont)

Cengiz Günay

Spring 2013

Model Complexity in Learning

Model Complexity in Learning

Let's start with the linear case...

Linear Regression

Linear Regression

price $=f($ size $)$

Linear Regression

price $=f($ size $)$

$$
?=f(3000)
$$

Regression-Finding the Parameters from Data

$$
y=f(x)=w_{1} x+w_{0}
$$

Regression-Finding the Parameters from Data

$$
y=f(x)=w_{1} x+w_{0}
$$

Linear Regression-Defining a Loss Function

$$
\begin{gathered}
y=f(x)=w_{1} x+w_{0} \\
\operatorname{Loss}(f)=\sum_{j}\left(y_{j}-f\left(x_{j}\right)\right)^{2}=\sum_{j}\left(y_{j}-\left(w_{1} x_{j}+w_{0}\right)\right)^{2}
\end{gathered}
$$

Linear Regression—Defining a Loss Function

$$
\begin{gathered}
y=f(x)=w_{1} x+w_{0} \\
\operatorname{Loss}(f)=\sum_{j}\left(y_{j}-f\left(x_{j}\right)\right)^{2}=\sum_{j}\left(y_{j}-\left(w_{1} x_{j}+w_{0}\right)\right)^{2}
\end{gathered}
$$

Minimum is where the derivative is zero:

$$
\frac{\partial}{\partial w_{0}} \sum_{j}\left(y_{j}-\left(w_{1} x_{j}+w_{0}\right)\right)^{2}=0, \quad \frac{\partial}{\partial w_{1}} \sum_{j}\left(y_{j}-\left(w_{1} x_{j}+w_{0}\right)\right)^{2}=0
$$

Linear Regression—Defining a Loss Function

$$
\begin{gathered}
y=f(x)=w_{1} x+w_{0} \\
\operatorname{Loss}(f)=\sum_{j}\left(y_{j}-f\left(x_{j}\right)\right)^{2}=\sum_{j}\left(y_{j}-\left(w_{1} x_{j}+w_{0}\right)\right)^{2}
\end{gathered}
$$

Minimum is where the derivative is zero:

$$
\frac{\partial}{\partial w_{0}} \sum_{j}\left(y_{j}-\left(w_{1} x_{j}+w_{0}\right)\right)^{2}=0, \quad \frac{\partial}{\partial w_{1}} \sum_{j}\left(y_{j}-\left(w_{1} x_{j}+w_{0}\right)\right)^{2}=0
$$

Solution is:
$w_{1}=\frac{N\left(\sum x_{j} y_{j}\right)-\left(\sum x_{j}\right)\left(\sum y_{j}\right)}{N\left(\sum x_{j}^{2}\right)-\left(\sum y_{j}\right)^{2}}$,

$$
w_{0}=\left(\sum y_{j}-w_{1}\left(\sum x_{j}\right)\right) / N
$$

Remember Bayes Nets?

We can learn them from data, too.

- Everybody loves spam!

Vear Sir.
First, I must solicit your confidence in this transaction, this is by virtue of its nature as being utterly confidential and top secret. ..

TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT

99 MILLION EMAIL ADDRESSES FOR ONLY $\$ 99$

Ok, I know this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner,

Maximum Likelihood: Guessing Spam Probability

SPAM	HAM
OFFER IS SECRET	PLAY SPORTS TODAY
CLICK SECRET LINK	WENT PLAY SPORTS
SECRET SPORTS LINK	SECRET SPORTS EVENT SPORT IS TODAY SPORT COST MONEY
QUIZ $P(S P A M)=$	

Maximum Likelihood: Guessing Spam Probability

SPAM	HAM
OFFER IS SERET	PLAY SPORTS TODAY
CLICK SECRET LINK	WENT PLAY SPORTS
SECRET SPORTI LINK	SECRET SPORTS EVENT SPORT IS TODAY SPORT COST MOVEY
QUIZ $P($ SPAM $)=$	

Let's guess: $P(S)=\pi$

$$
P\left(y_{i}\right)= \begin{cases}\pi & \text { if } y_{i}=S \\ 1-\pi & \text { if } y_{i}=H\end{cases}
$$

Maximum Likelihood: Guessing Spam Probability

Let's guess: $P(S)=\pi$

$$
P\left(y_{i}\right)= \begin{cases}\pi & \text { if } y_{i}=S \\ 1-\pi & \text { if } y_{i}=H\end{cases}
$$

Joint probability

$$
\begin{aligned}
P(\text { data }) & =\pi^{\operatorname{count}(S)} \times(1-\pi)^{\operatorname{count}(H)} \\
& =\pi^{3} \times(1-\pi)^{5}
\end{aligned}
$$

Maximum Likelihood: Guessing Spam Probability

Joint probability

$$
\begin{aligned}
P(\text { data }) & =\pi^{\operatorname{count}(S)} \times(1-\pi)^{\operatorname{count}(H)} \\
& =\pi^{3} \times(1-\pi)^{5}
\end{aligned}
$$

Take log of both sides

$$
\log P(\text { data })=3 \log \pi+5 \log (1-\pi)
$$

Maximum Likelihood: Guessing Spam Probability

Joint probability

$$
\begin{aligned}
P(\text { data }) & =\pi^{\operatorname{count}(S)} \times(1-\pi)^{\operatorname{count}(H)} \\
& =\pi^{3} \times(1-\pi)^{5}
\end{aligned}
$$

Take log of both sides

$$
\log P(\text { data })=3 \log \pi+5 \log (1-\pi)
$$

Find max by zero derivative

$$
\begin{aligned}
\frac{\nabla P(\text { data })}{\nabla \pi} & =0=\frac{3}{\pi}-\frac{5}{1-\pi} \\
\pi & =3 / 8
\end{aligned}
$$

Bag of Words Representation

BAG OF CORDS
Hello I will say hello
HELLO I WILL SAY \} DICTIONARY 2111

Bag of Words Representation

BAG OF FJORDS
hello I dill say hello
HELLO 1 WILL SAY $\}$ DICTIONARY 2111

SPAM OFFER is secret CLICK SECRET LINK SECRET SPORTS LINK

HAM plat sports today Went play sports secret sports event SPORT is TODAT sport coss money

QUIZ SIZE of vOCABULARY = \square

Maximum Likelihood: Guessing Word Probability

Finally, Back to Bayes Nets

Finally, Back to Bayes Nets

SPAM	HAM
OFFER IS SECRET	PLAY SPORTS TODAY
CLICK SECRET LINK	WENT PLAY SPORTS
SECRET SPORTS LINK	SECRET SPORT EVENT SPORTS IS TODAY SPORTS COST MONEY

Quiz MESSACE $M=$ "SPORTS"

$$
P(\operatorname{SPAM} \mid M)=
$$

\square

Finally, Back to Bayes Nets

SPAM	HAM
OFFER IS SECRET	PLAY SPORTS TODAY
CLICK SECRET LINK	WENT PLAY SPORTS
SECRET SPORTS LINK	SECRET SPORTS EVENT SPORTS iS TODAY SPORTS COST MONEY

Quiz MESSACE $M=$ "SPORTS"
$P($ SPAM $\mid M)=$ \square

$$
P(S \mid M)=\alpha P(M \mid S) P(S)
$$

SPAM	HAM
OFFER IS SERRET	PLAY SPORTS TODAY
CLICR SECRET LINK	WEMT PLAY SPORTS
SECRET SPORTS LINK	SECRET SPORTS EVENT SPORTS IS TODAY SPRTS COSD MONEY
QUIZ M="SECRET is SECRET	
P(SPAM $\mid M)=\square$	

$$
P(S \mid M)=\alpha P(M \mid S) P(S)
$$

$$
\begin{array}{cl}
\text { SPAM } & \text { HAM } \\
\text { OFFER iS SERRET } & \text { PLAY SPORTS TODAY } \\
\text { CLICK SECRET LINK } & \text { WEN PLAY SPORTS } \\
\text { SECRET SPORTS LINK } & \begin{array}{l}
\text { SECRET SPORT EVENT } \\
\text { SPORTS is TODAY } \\
\text { SPORTS COSS MONEY }
\end{array} \\
\text { QUIZ } M=\text { "SECRET is SECRET }
\end{array}
$$

Problems?

SPAM	HAM
OFFER IS SERER	PLAY SPORTS TODAY
CLICK SECRET LINK	WENT PLAY SPORTS
SECRET SPORTS LINK	SECRET SPORTS EVENT SPORTS IS TODAY SPORTS COST MONEY
Quiz M "TODAT IS SECRET"	
P(SPAM \|M) $=\square$	

Problems?

$$
P(S \mid M)=0
$$

Problems?

$$
P(S \mid M)=0
$$

- Need Laplace Smoothing (check the videos)

What If We Cannot Learn So Easily?

So far we calculated directly from data:

- Linear regression coefficients through explicit solution
- Bayes net parameters through maximal likelihood

What If We Cannot Learn So Easily?

So far we calculated directly from data:

- Linear regression coefficients through explicit solution
- Bayes net parameters through maximal likelihood

But cannot solve every problem with these. Classification solution is not unique:

What If We Cannot Learn So Easily?

So far we calculated directly from data:

- Linear regression coefficients through explicit solution
- Bayes net parameters through maximal likelihood

But cannot solve every problem with these. Classification solution is not unique:

Perceptron Also Calculates Linear Boundary

$$
\begin{gathered}
\operatorname{sum}=\sum_{i=1}^{N} l_{i} W_{i} \\
y= \begin{cases}1, & \text { if sum } \geq T \\
0, & \text { if sum }<T\end{cases}
\end{gathered}
$$

Perceptron, 2D Case

Line equation in 2D:

Perceptron, 2D Case

Line equation in 2D:

$$
\begin{aligned}
x_{2} & =a x_{1}+b \\
-b & =a x_{1}-x_{2}
\end{aligned}
$$

Perceptron, 2D Case

Line equation in 2D:

$$
\begin{aligned}
x_{2} & =a x_{1}+b \\
-b & =a x_{1}-x_{2}
\end{aligned}
$$

The perceptron boundary:

$$
T=w_{1} x_{1}+w_{2} x_{2}
$$

Perceptron, 2D Case

Line equation in 2D:

$$
\begin{aligned}
x_{2} & =a x_{1}+b \\
-b & =a x_{1}-x_{2}
\end{aligned}
$$

The perceptron boundary:

$$
\begin{gathered}
T=w_{1} x_{1}+w_{2} x_{2} \\
y= \begin{cases}1, & \text { if sum } \geq T \\
0, & \text { if sum }<T\end{cases}
\end{gathered}
$$

Perceptron, 2D Case

Line equation in 2D:

$$
\begin{aligned}
x_{2} & =a x_{1}+b \\
-b & =a x_{1}-x_{2}
\end{aligned}
$$

The perceptron boundary:

$$
\begin{gathered}
T=w_{1} x_{1}+w_{2} x_{2} \\
y= \begin{cases}1, & \text { if sum } \geq T \\
0, & \text { if sum }<T\end{cases}
\end{gathered}
$$

How to learn it?

Use the Loss Function, Perceptron

Perceptron:

$$
y=f_{w}(x)
$$

Over all samples:

$$
\operatorname{Loss}(\mathbf{w})=\sum_{i}\left(y_{i}-f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)\right)^{2}
$$

Use the Loss Function, Perceptron

Perceptron:

$$
y=f_{w}(x)
$$

Over all samples:

$$
\operatorname{Loss}(\mathbf{w})=\sum_{i}\left(y_{i}-f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)\right)^{2}
$$

Trying to find

$$
\arg \min _{\mathbf{w}} \operatorname{Loss}(\mathbf{w})
$$

Use the Loss Function, Perceptron

Perceptron:

$$
y=f_{w}(x)
$$

Over all samples:

$$
\operatorname{Loss}(\mathbf{w})=\sum_{i}\left(y_{i}-f_{w}\left(\mathbf{x}_{i}\right)\right)^{2}
$$

Trying to find

$$
\arg \min _{\mathbf{w}} \operatorname{Loss}(\mathbf{w})
$$

An incremental rule:

$$
w_{j} \leftarrow w_{j}-\alpha \frac{\partial}{\partial w_{j}} \operatorname{Loss}(\mathbf{w})
$$

Use the Loss Function, Perceptron

Perceptron:

$$
y=f_{w}(x)
$$

Over all samples:

$$
\operatorname{Loss}(\mathbf{w})=\sum_{i}\left(y_{i}-f_{w}\left(\mathbf{x}_{i}\right)\right)^{2}
$$

Trying to find

$$
\arg \min _{\mathbf{w}} \operatorname{Loss}(\mathbf{w})
$$

An incremental rule:

$$
\begin{gathered}
w_{j} \leftarrow w_{j}-\alpha \frac{\partial}{\partial w_{j}} \operatorname{Loss}(\mathbf{w}) \\
w_{j} \leftarrow w_{j}+\alpha\left(y-f_{w}(\mathbf{x})\right) \times x_{j}
\end{gathered}
$$

It's Called the Perceptron Learning Rule

It's Called the Perceptron Learning Rule

| | $y=0$
 Tom | $y=1$
 Jerry | |
| :---: | :---: | :---: | :--- | | Start: $\mathbf{w}=0, \alpha=1, T=1$. |
| :--- |
| For $y_{\text {Tom }}:$ |

It's Called the Perceptron Learning Rule

	$y=0$ Tom	$y=1$ Jerry	
$\times\left\{\begin{array}{l}\text { Start: } \mathbf{w}=0, \alpha=1, T=1 . \\ \text { For } y_{\text {Tom }}:\end{array}\right.$			
Trucks	1	0	
Sedans	0	1	$w_{\text {Trucks }} \leftarrow w_{\text {Trucks }}+(0-0) \times 1$
Hybrids	0	1	
SUVs	1	0	For $y_{\text {Jerry }}:$

It's Called the Perceptron Learning Rule

	$y=0$ Tom	$y=1$ Jerry	
$\times\left\{\begin{array}{c}\text { Start: } \mathbf{w}=0, \alpha=1, T=1 . \\ \text { For } y_{\text {Tom }}:\end{array}\right.$			
Trucks	1	0	
Sedans	0	1	$w_{\text {Trucks }} \leftarrow w_{\text {Trucks }}+(0-0) \times 1$
Hybrids	0	1	
SUVs	1	0	For $y_{\text {Jerry }}:$
			$w_{\text {Sedans }} \leftarrow w_{\text {Sedans }} \pm(1-0) \times 1$

Gradient Descent on the Loss Function

In general,

$$
w_{j} \leftarrow w_{j}+\alpha \frac{\partial}{\partial w_{j}} \operatorname{Loss}(\mathbf{w})
$$

Loss

Gradient Descent on the Loss Function

In general,

$$
w_{j} \leftarrow w_{j}+\alpha \frac{\partial}{\partial w_{j}} \operatorname{Loss}(\mathbf{w})
$$

Loss

Global
minimum
Adaptive $\alpha \Rightarrow$ Simulated Annealing

Gradient Descent on the Loss Function

In general,

$$
w_{j} \leftarrow w_{j}+\alpha \frac{\partial}{\partial w_{j}} \operatorname{Loss}(\mathbf{w})
$$

Loss

Global
minimum
Adaptive $\alpha \Rightarrow$ Simulated Annealing
Major problem: local minima

What If the Boundary is Non-linear?

What If the Boundary is Non-linear?

What If the Boundary is Non-linear?

What If the Boundary is Non-linear?

\Rightarrow Multi-Layer Perceptrons

Another Solution: Non-linear Kernels

Another Solution: Non-linear Kernels

- Convert feature (input) space using non-linear kernel (e.g., radial distance)

Optimal Boundary? Enter Support Vector Machines

Optimal Boundary? Enter Support Vector Machines

Optimal Boundary? Enter Support Vector Machines

- SVMs are guaranteed to find optimal solution \Rightarrow Statistical Learning Theory

Optimal Boundary? Enter Support Vector Machines

- SVMs are guaranteed to find optimal solution \Rightarrow Statistical Learning Theory
- Kernel SVMs are especially powerful because it can search in multi-dimensional kernel space

So Many Methods So Little Time. . . How to Choose?

- Problem choosing model complexity
- Kernel type
- Structural complexity of MLP or SVM

So Many Methods So Little Time. . . How to Choose?

- Problem choosing model complexity
- Kernel type
- Structural complexity of MLP or SVM

Solution, ask the data:
(1) cross-validation

Divide data into three sets: training, validate, test

So Many Methods So Little Time. . . How to Choose?

- Problem choosing model complexity
- Kernel type
- Structural complexity of MLP or SVM

Solution, ask the data:
(1) cross-validation

Divide data into three sets: training, validate, test
(2) regularization

Add complexity minimization term to Loss function

$$
\operatorname{Loss}=\sum\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\beta \times \text { num params }
$$

Or, Get Rid of 'em Altogether: Non-parameric Models

k-Nearest Neighbors algorithm:

- Keep all data points as lookup table
- Smoothing parameter, k

Or, Get Rid of 'em Altogether: Non-parameric Models

k-Nearest Neighbors algorithm:

- Keep all data points as lookup table
- Smoothing parameter, k

Problems?

Or, Get Rid of 'em Altogether: Non-parameric Models

k-Nearest Neighbors algorithm:

- Keep all data points as lookup table
- Smoothing parameter, k

Problems?

- Number of data points
- Number of features

Finally, a Totally Different One: Genetic Algorithms

Finally, a Totally Different One: Genetic Algorithms

Problems:

- No local minima, takes longer, must design problem well

Summary of Supervised Machine Learning

- Can solve problems too complex for man-made algorithms
- Gets better with data (good for information age)
- Supervised learning with labels: regression and classification

Summary of Supervised Machine Learning

- Can solve problems too complex for man-made algorithms
- Gets better with data (good for information age)
- Supervised learning with labels: regression and classification
- Linear regression and Bayes nets calculated from data directly
- Classification by minimizing Loss function iteratively

Summary of Supervised Machine Learning

- Can solve problems too complex for man-made algorithms
- Gets better with data (good for information age)
- Supervised learning with labels: regression and classification
- Linear regression and Bayes nets calculated from data directly
- Classification by minimizing Loss function iteratively
- Local minima is a problem with gradient descent
- Non-linear problems can be solved with multiple boundaries or kernels
- Support vector machines find optimal solution faster

Summary of Supervised Machine Learning

- Can solve problems too complex for man-made algorithms
- Gets better with data (good for information age)
- Supervised learning with labels: regression and classification
- Linear regression and Bayes nets calculated from data directly
- Classification by minimizing Loss function iteratively
- Local minima is a problem with gradient descent
- Non-linear problems can be solved with multiple boundaries or kernels
- Support vector machines find optimal solution faster
- Parameter complexity can be reduced with cross validation and regularization
- Non-parametric models good for low-dimensional problems
- Genetic algorithms have no local minima

