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Model Complexity in Learning
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Let's start with the linear case. ..



Linear Regression
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Linear Regression
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Regression—Finding the Parameters from Data

y =f(x) = wix+ wp

wy =7
w1 I?




Regression—Finding the Parameters from Data




Linear Regression—Defining a Loss Function



Linear Regression—Defining a Loss Function

y =f(x) = wix +wp

Loss(f) =Y (v — F())* = D> _ (3 — (waxj + wp))?
J J
Minimum is where the derivative is zero:
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Linear Regression—Defining a Loss Function

y =f(x) = wix +wp

Loss(f) =Y (v — F())* = D> _ (3 — (waxj + wp))?
J J
Minimum is where the derivative is zero:

0 0
aTVOZ(yj— (wax; + wo))* = 0, TMZ(yj—(Wer wp))? =0

Solution is:
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Remember Bayes Nets?

We can learn them from data, too.

@ Everybody loves spam!

vear S

First, | must solicit your confidence in
this transaction, this is by virtue of its
nature as being utterly confidential and
top secret.

TO BE REMOVED FROM FUTURE |
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN
THE SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY 589 |

Ok, | know this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
} ing pre being stuck in the corner,




Maximum Likelihood: Guessing Spam Probability
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Maximum Likelihood: Guessing Spam Probability

SPAR WAH
OFTFER (8 SEERET PLAY 5po@T3 TODAY
CLicH SECRET Link WENT eLAY JSPAORT

—VEUT
LINK  SecleT Seoets 5]
e Cpor iy TODAY
SPPT cosp MOVEY

Quiz  P(sman) = C:\

Let's guess: P(S) =
P(y) = {” iy =5
l—7 ity;=H
Joint probability
P(data) = meumi(S) x (1 — g)count(H)
7 x (1- W)5



Maximum Likelihood: Guessing Spam Probability

Joint probability

P(data) — 7_‘_count(S) « (1 _ 7[_)count(H)
™ x (1-n)°

Take log of both sides

log P(data) = 3logm + 5log(l— )



Maximum Likelihood: Guessing Spam Probability

Joint probability

P(data) — 7_‘_count(S) « (1 _ 7[_)count(H)
™ x (1-n)°
Take log of both sides
log P(data) = 3logm + 5log(l— )
Find max by zero derivative
VP(data) 0— 3 5
Yy o 1-nx

m=3/8



Bag of Words Representation
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Bag of Words Representation

BAC OF LORYS

WEWo | LIl SAY HELLD
WEllo | wuL SAY }%ﬂb\um-(

g S |

SPAK WAH
OFFER (S JECRET PLAY SpoT] TODAY
CLicK SECRET LinK WENT PLAY JPORT

SECRET GpokTs LINK  SecleT Seoets GVEWT
SPo@T g ToDAY
SPofT cosp MINEY

QUIT  GiIE OF VOCABULARY = ]_ [



Maximum Likelihood: Guessing Word Probability

SPaAk WAH

OFFER (8 SECRET PLAY 5@oRTS TODAY
CLicH SECRET LiNK WENT LAY .rPote;‘Jm_
SECRET SPokTy LINK  SECReT SeolT GV
A CPolT ig ToDAY
SPOET (osp rMaey

Quix  ML-Socutions FoR

PC" seceer | soan)=[ |
PC seceer ) WA )= [



Finally, Back to Bayes Nets
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Finally, Back to Bayes Nets
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Finally, Back to Bayes Nets
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Finally, Back to Bayes Nets

SPAR WAH
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Finally, Back to Bayes Nets

SPAR WAH
OFFER 1§ JECRET PLAY 5PoRT3 TODAY
CLick SECRET LinK ent eLAY JPORT

VEUT
EC o LINK  SEcleT Seoen GV
oSl CPodTs (¢ TODAY
SPAT cosp MMNEY

Quir M="SecreT ¢ secReT *

PlseAn |M) = T

P(S|M) = aP(M|S)P(S) = aP(M1, M2, M3|S)P(S)



Problems?
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Problems?

SPAR WHAH
OFFER (8 SEERET PLAY 5@@TS TODAY
CLick SECRET Link LEMT PLAY JPORT

—VEWUT
N SECPET Spoeth v
e . SPoars 1y TODAY

SPRTS cosp MMEY

Quir M= "TODAY lg seceet

P( span 1r0=T_:]
P(S|M) =0

o Need Laplace Smoothing (check the videos)



What If We Cannot Learn So Easily?

So far we calculated directly from data:
@ Linear regression coefficients through explicit solution

@ Bayes net parameters through maximal likelihood
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So far we calculated directly from data:
@ Linear regression coefficients through explicit solution
@ Bayes net parameters through maximal likelihood
But cannot solve every problem with these. Classification solution

is not unique:
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What If We Cannot Learn So Easily?

So far we calculated directly from data:
@ Linear regression coefficients through explicit solution
@ Bayes net parameters through maximal likelihood

But cannot solve every problem with these. Classification solution
is not unique:
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Perceptron Also Calculates Linear Boundary

Inputs  Weights 7 9
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Threshold T

i=1

1, ifsum>T
0, ifsum< T



Perceptron, 2D Case
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Perceptron, 2D Case

Line equation in 2D:

X2

axi+ b

axy — X2
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Perceptron, 2D Case
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The perceptron boundary: ' %

T = wixi+ waxo



Perceptron, 2D Case
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Perceptron, 2D Case

. . . o@ ’
Line equation in 2D: 65 e
8 .-

x2 = axi+b T oas|T o o

_ 35 i .
—b = axiy — X2 3.7

The perceptron boundary: ' %
T = wixi+ waxo

_J1, ifsum>T
Y= 0, ifsum< T

How to learn it?



Use the Loss Function, Perceptron

Perceptron:

Over all samples:



Use the Loss Function, Perceptron

Perceptron:

Over all samples:

Trying to find
arg min Loss(w)
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Use the Loss Function, Perceptron

Perceptron:

Over all samples:

Trying to find
arg min Loss(w)
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An incremental rule;

wj < wj — a——Loss(w)

Iw;



Use the Loss Function, Perceptron

Perceptron:

Over all samples:

Trying to find
arg min Loss(w)
w

An incremental rule;

wj < wj — a——Loss(w)

Iw;

wj < wj + aly — fw(x)) X X;



It's Called the Perceptron Learning Rule

Inputs  Weights
W

Trucks 1 0
Sedans 0 1
Hybrids 0 1
SUVs 1 0



It's Called the Perceptron Learning Rule

Inputs  Weights
W

Threshold T

wj < wj + aly — fw(x)) X X;

y=0 y=1 Start: w=0,a=1, T =1.
Tom  Jerry For yrom:

Trucks 1 0

Sedans 0 1

Hybrids 0 1

SUVs 1 0




It's Called the Perceptron Learning Rule

Inputs  Weights
W

Threshold T

wj < wj + aly — fw(x)) X X;

y=0 y=1 Start: w=0,a=1, T =1.

Tom  Jerry For yrom:
Trucks 1 0
Sedans 0 1 WTrucks €~ WTrucks 1 (0 - O) x1
Hybrids 0 1
SUVs | 1 0 For ¥ serry:



It's Called the Perceptron Learning Rule

Inputs  Weights
Wi

Threshold T

wj = wj +aly — fu(x)) x x;

y=0 y=1 Start: w=0, =1, T = 1.

Tom  Jerry For Yrom:
Trucks 1 0
Sedans 0 1 WTrucks $— Wrrucks +(0—0) x 1
Hybrids 0 1
SUVs 1 0 For yjerry:

WSedans <~ WSedans T (1 — 0) x 1



Gradient Descent on the Loss Function

In general,

0
wj < wj + amLoss(w)
j

Local
minimum

Global
minimum
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Gradient Descent on the Loss Function

In general,

0
wj < wj + amLoss(w)
j

Local
minimum

Global
minimum

Y

Adaptive  =Simulated Annealing

Major Eroblem: local minima



What If the Boundary is Non-linear?
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What If the Boundary is Non-linear?
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What If the Boundary is Non-linear?
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What If the Boundary is Non-linear?

X X .
X e




Another Solution: Non-linear Kernels




Another Solution: Non-linear Kernels

o Convert feature (input) space using non-linear kernel (e.g.,
radial distance)



Optimal Boundary? Enter Support Vector Machines

0 0.2 0.4 0.6 0.8 1



Optimal Boundary? Enter Support Vector Machines

0 0.2 0.4 0.6 0.8 1
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@ SVMs are guaranteed to find optimal solution = Statistical
Learning Theory



Optimal Boundary? Enter Support Vector Machines

0 0.2 0.4 0.6 0.8 1

@ SVMs are guaranteed to find optimal solution = Statistical
Learning Theory

o Kernel SVMs are especially powerful because it can search in
multi-dimensional kernel space



So Many Methods So Little Time... How to Choose?

@ Problem choosing model complexity
o Kernel type
@ Structural complexity of MLP or SVM
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@ Structural complexity of MLP or SVM
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@ cross-validation
Divide data into three sets: training, validate, test



So Many Methods So Little Time... How to Choose?

@ Problem choosing model complexity
o Kernel type

@ Structural complexity of MLP or SVM
Solution, ask the data:

@ cross-validation

Divide data into three sets: training, validate, test
@ regularization

Add complexity minimization term to Loss function

Loss = Z(y,- — f(x;))* + 8 x num params



Or, Get Rid of 'em Altogether: Non-parameric Models

k-Nearest Neighbors algorithm:
o Keep all data points as lookup table

@ Smoothing parameter, k
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Or, Get Rid of 'em Altogether: Non-parameric Models

k-Nearest Neighbors algorithm:
o Keep all data points as lookup table

@ Smoothing parameter, k

Problems?
@ Number of data points

@ Number of features



Finally, a Totally Different One: Genetic Algorithms

| | POPULATION |

MUTATION

Giinay
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Finally, a Totally Different One: Genetic Algorithms
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Problems:

@ No local minima, takes longer, must design problem well

Giinay



Summary of Supervised Machine Learning

@ Can solve problems too complex for man-made algorithms
@ Gets better with data (good for information age)

@ Supervised learning with labels: regression and classification



Summary of Supervised Machine Learning

Can solve problems too complex for man-made algorithms
Gets better with data (good for information age)
Supervised learning with labels: regression and classification

Linear regression and Bayes nets calculated from data directly

Classification by minimizing Loss function iteratively



Summary of Supervised Machine Learning

Can solve problems too complex for man-made algorithms
Gets better with data (good for information age)

Supervised learning with labels: regression and classification
Linear regression and Bayes nets calculated from data directly
Classification by minimizing Loss function iteratively

Local minima is a problem with gradient descent

Non-linear problems can be solved with multiple boundaries or
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@ Support vector machines find optimal solution faster



Summary of Supervised Machine Learning

Can solve problems too complex for man-made algorithms
Gets better with data (good for information age)

Supervised learning with labels: regression and classification
Linear regression and Bayes nets calculated from data directly
Classification by minimizing Loss function iteratively

Local minima is a problem with gradient descent

Non-linear problems can be solved with multiple boundaries or
kernels

Support vector machines find optimal solution faster

Parameter complexity can be reduced with cross validation and
regularization

Non-parametric models good for low-dimensional problems

Genetic algorithms have no local minima



