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Model Complexity in Learning

x

f(x)

Let’s start with the linear case. . .
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Linear Regression

price = f (size)

? = f (3000)
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Regression—Finding the Parameters from Data

y = f (x) = w1x + w0

x y
2 7
−1 −2
5 16
−3 −8

w0 =?
w1 =?
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Linear Regression—Defining a Loss Function

y = f (x) = w1x + w0

Loss(f ) =
∑

j

(yj − f (xj))
2 =

∑
j

(yj − (w1xj + w0))
2

Minimum is where the derivative is zero:

∂

∂w0

∑
j

(yj − (w1xj + w0))
2 = 0,

∂

∂w1

∑
j

(yj − (w1xj + w0))
2 = 0

Solution is:

w1 =
N(
∑

xjyj)− (
∑

xj)(
∑

yj)

N(
∑

x2
j )− (

∑
yj)2

, w0 =
(∑

yj − w1(
∑

xj)
)
/N
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Remember Bayes Nets?
We can learn them from data, too.

Everybody loves spam!
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Maximum Likelihood: Guessing Spam Probability

Let’s guess: P(S) = π

P(yi ) =

{
π if yi = S
1− π if yi = H

Joint probability

P(data) = πcount(S) × (1− π)count(H)

= π3 × (1− π)5

Take log of both sides

logP(data) = 3 log π + 5 log(1− π)
Find max by zero derivative

∇P(data)
∇π

= 0 =
3
π
− 5

1− π

π = 3/8
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Bag of Words Representation
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Maximum Likelihood: Guessing Word Probability
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Finally, Back to Bayes Nets
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Finally, Back to Bayes Nets
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Finally, Back to Bayes Nets

P(S |M) = αP(M|S)P(S) = αP(M1,M2,M3|S)P(S)
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Problems?

P(S |M) = 0

Need Laplace Smoothing (check the videos)
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What If We Cannot Learn So Easily?

So far we calculated directly from data:
Linear regression coefficients through explicit solution
Bayes net parameters through maximal likelihood

But cannot solve every problem with these. Classification solution
is not unique:
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Perceptron Also Calculates Linear Boundary

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5

4.5 5 5.5 6 6.5 7

x 2

x1

sum =
N∑

i=1

IiWi

y =

{
1, if sum ≥ T
0, if sum < T
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Perceptron, 2D Case

Line equation in 2D:

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5

4.5 5 5.5 6 6.5 7

x 2

x1

x2 = a x1 + b

−b = a x1 − x2

The perceptron boundary:

T = w1x1 + w2x2

y =

{
1, if sum ≥ T
0, if sum < T

How to learn it?
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Use the Loss Function, Perceptron

Perceptron:

y = fw(x)

Over all samples:

Loss(w) =
∑

i

(yi − fw(xi ))
2

Trying to find
argmin

w
Loss(w)

An incremental rule:

wj ← wj − α
∂

∂wj
Loss(w)

wj ← wj + α(y − fw(x))× xj
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It’s Called the Perceptron Learning Rule

wj ← wj + α(y − fw(x))× xj

y = 0 y = 1
Tom Jerry

x


Trucks 1 0
Sedans 0 1
Hybrids 0 1
SUVs 1 0

Start: w = 0, α = 1, T = 1.
For yTom:

wTrucks ← wTrucks+(0−0)×1

For yJerry :

wSedans ← wSedans+(1−0)×1
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Gradient Descent on the Loss Function

In general,

wj ← wj + α
∂

∂wj
Loss(w)

Global 
minimum

Local 
minimum

Loss

?

? ?

Adaptive α ⇒Simulated Annealing
Major problem: local minima
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What If the Boundary is Non-linear?

⇒Multi-Layer Perceptrons
w3,5

3,6w

4,5w

4,6w

5

6

w1,3

1,4w

2,3w

2,4w

1

2

3

4

w1,3

1,4w

2,3w

2,4w

1

2

3

Günay Chs. 18 & 4 – Supervised Machine Learning (cont)



What If the Boundary is Non-linear?

⇒Multi-Layer Perceptrons
w3,5

3,6w

4,5w

4,6w

5

6

w1,3

1,4w

2,3w

2,4w

1

2

3

4

w1,3

1,4w

2,3w

2,4w

1

2

3

Günay Chs. 18 & 4 – Supervised Machine Learning (cont)



What If the Boundary is Non-linear?

⇒Multi-Layer Perceptrons
w3,5

3,6w

4,5w

4,6w

5

6

w1,3

1,4w

2,3w

2,4w

1

2

3

4

w1,3

1,4w

2,3w

2,4w

1

2

3

Günay Chs. 18 & 4 – Supervised Machine Learning (cont)



What If the Boundary is Non-linear?

⇒Multi-Layer Perceptrons

w3,5

3,6w

4,5w

4,6w

5

6

w1,3

1,4w

2,3w

2,4w

1

2

3

4

w1,3

1,4w

2,3w

2,4w

1

2

3

Günay Chs. 18 & 4 – Supervised Machine Learning (cont)



Another Solution: Non-linear Kernels

Convert feature (input) space using non-linear kernel (e.g.,
radial distance)
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Optimal Boundary? Enter Support Vector Machines
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SVMs are guaranteed to find optimal solution ⇒ Statistical
Learning Theory
Kernel SVMs are especially powerful because it can search in
multi-dimensional kernel space
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So Many Methods So Little Time. . . How to Choose?

Problem choosing model complexity
Kernel type
Structural complexity of MLP or SVM

Solution, ask the data:
1 cross-validation

Divide data into three sets: training, validate, test
2 regularization

Add complexity minimization term to Loss function

Loss =
∑

(yi − f (xi ))
2 + β × num params
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Or, Get Rid of ’em Altogether: Non-parameric Models

k-Nearest Neighbors algorithm:
Keep all data points as lookup table
Smoothing parameter, k
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Problems?
Number of data points
Number of features
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Finally, a Totally Different One: Genetic Algorithms

Problems:
No local minima, takes longer, must design problem well
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Summary of Supervised Machine Learning

Can solve problems too complex for man-made algorithms
Gets better with data (good for information age)
Supervised learning with labels: regression and classification

Linear regression and Bayes nets calculated from data directly
Classification by minimizing Loss function iteratively
Local minima is a problem with gradient descent
Non-linear problems can be solved with multiple boundaries or
kernels
Support vector machines find optimal solution faster
Parameter complexity can be reduced with cross validation and
regularization
Non-parametric models good for low-dimensional problems
Genetic algorithms have no local minima
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