CS325 Artificial Intelligence Ch. 21 – Reinforcement Learning

Cengiz Günay, Emory Univ.

Spring 2013

Günay

Ch. 21 – Reinforcement Learning

Spring 2013 1 / 23

Fundooprofessor

- Rat put in a cage with lever.
- Each lever press sends a signal to rat's brain, to the reward center.

Fundooprofessor

- Rat put in a cage with lever.
- Each lever press sends a signal to rat's brain, to the reward center.
- Rat presses lever continously until . . .

Fundooprofessor

- Rat put in a cage with lever.
- Each lever press sends a signal to rat's brain, to the reward center.
- Rat presses lever continously until . . .

it dies because it stops eating and drinking.

Dopamine Pathways

Serotonin Pathways

Wikipedia.org

Dopamine Neurons Respond to Novelty

Günay

Ch. 21 – Reinforcement Learning

Spring 2013 4 / 23

Dopamine Neurons Respond to Novelty

Günay

Spring 2013 4 / 23

observation

<ロト <四ト <注入 <注下 <注下 <

Performance standard

Exit survey: Planning Under Uncertainty

- Why can't we use a regular MDP for partially-observable situations?
- Give an example where you think MDPs would help you solve a problem in your daily life.

Entry survey: Reinforcement Learning (0.25 points of final grade)

- In a partially-observable scenario, can reinforcement be used to learn MDP rewards?
- How can we improve MDP by using the plan-execute cycle?

Blindfolded MDPs: Enter Reinforcement Learning

What if the agent does not know anything about:

- where walls are
- where goals/penalties are

Blindfolded MDPs: Enter Reinforcement Learning

What if the agent does not know anything about:

- where walls are
- where goals/penalties are

Can we use the plan-execute cycle?

Blindfolded MDPs: Enter Reinforcement Learning

What if the agent does not know anything about:

- where walls are
- where goals/penalties are

Can we use the plan-execute cycle?

- Explore first
- Update world state based on reward/reinforcement
- ⇒ Reinforcement Learning (see Scholarpedia article)

Where Does Reinforcement Learning Fit?

Machine learning so far:

Where Does Reinforcement Learning Fit?

Machine learning so far:

Unsupervised learning: find regularities in input data, x

Unsupervised learning: find regularities in input data, x

Supervised learning: find mapping between input and output, $f(x) \rightarrow y$

Unsupervised learning: find regularities in input data, x

Supervised learning: find mapping between input and output, $f(x) \rightarrow y$

Reinforcement learning: find mapping between states and actions, s
ightarrow a

Unsupervised learning: find regularities in input data, x

Supervised learning: find mapping between input and output, $f(x) \rightarrow y$

Reinforcement learning: find mapping between states and actions, $s \to a$ (by finding optimal policy, $\pi(s) \to a$)

Unsupervised learning: find regularities in input data, x

Supervised learning: find mapping between input and output, $f(x) \rightarrow y$ Reinforcement learning: find mapping between states and actions, $s \rightarrow a$ (by finding optimal policy, $\pi(s) \rightarrow a$)

Whi	ch i	s it?	
S	U	R	
			Speech recognition: connect sounds to transcripts Star data: find groupings from spectral emissions Rat presses lever: gets reward based on certain conditions Elevator controller: multiple elevators, minimize wait time

Unsupervised learning: find regularities in input data, x

Supervised learning: find mapping between input and output, $f(x) \rightarrow y$ Reinforcement learning: find mapping between states and actions, $s \rightarrow a$ (by finding optimal policy, $\pi(s) \rightarrow a$)

Whi	ch i	s it?	
S	U	R	
Х			Speech recognition: connect sounds to transcripts
	X		Star data: find groupings from spectral emissions
		Х	Rat presses lever: gets reward based on certain conditions
		Х	Elevator controller: multiple elevators, minimize wait time

But, Wasn't That What Markov Decision Processes Were?

• Find optimal policy to maximize reward:

$$\pi(s) = \arg \max_{\pi} E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s, \pi(s), s')\right],$$

with reward at state: R(s), or from action, R(s, a, s').

• Find optimal policy to maximize reward:

$$\pi(s) = \arg \max_{\pi} E\left[\sum_{t=0}^{\infty} \gamma^t R(s, \pi(s), s')\right],$$

with reward at state: R(s), or from action, R(s, a, s').

• By estimating utility values:

$$V(s) \leftarrow \left[\arg \max_{a} \gamma \sum_{s'} P(s'|s, a) V(s') \right] + R(s),$$

with transition probabilities: P(s'|s, a)

• Find optimal policy to maximize reward:

$$\pi(s) = \arg \max_{\pi} E\left[\sum_{t=0}^{\infty} \gamma^t R(s, \pi(s), s')\right],$$

with reward at state: R(s), or from action, R(s, a, s').

• By estimating utility values:

$$V(s) \leftarrow \left[\arg \max_{a} \gamma \sum_{s'} P(s'|s, a) V(s') \right] + R(s),$$

with transition probabilities: P(s'|s, a)

• Assumes we know R(s) and P(s'|s, a)

Blindfolded Agent Must Learn From Rewards

Don't know R(s) or P(s'|s, a). What to do?

Blindfolded Agent Must Learn From Rewards

Don't know R(s) or P(s'|s, a). What to do?

• Use Reinforcement Learning (RL) to explore and find rewards

Blindfolded Agent Must Learn From Rewards

Don't know R(s) or P(s'|s, a). What to do?

• Use Reinforcement Learning (RL) to explore and find rewards

Agent types:					
knows	learns	uses			
Р	$R \rightarrow U$	U			
	Q(s, a)	Q			
	$\pi(s)$				
	knows P	$\begin{array}{c c} knows & learns \\ \hline P & R \to U \\ Q(s,a) \\ \pi(s) \end{array}$			

Video: Backgammon and Choppers

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

How Much to Learn?

Passive RL: Simple Case

- Keep policy $\pi(s)$ fixed, learn others
- Always do same actions, and learn utilities
- Examples:
 - public transit commute
 - learning a difficult game

How Much to Learn?

Passive RL: Simple Case

- Keep policy $\pi(s)$ fixed, learn others
- Always do same actions, and learn utilities
- Examples:
 - public transit commute
 - learning a difficult game
- 2 Active RL
 - Learn policy at the same time
 - Help explore better by changing policy
 - Example: drive own car

RL in Practise: Temporal Difference (TD) Rule

Animals use derivative:

Remember value iteration:

$$V(s) \leftarrow \left[\arg \max_{a} \gamma \sum_{s'} P(s'|s, a) V(s') \right] + R(s).$$

Reward predicted No reward occurs

Ch. 21 – Reinforcement Learning

(日) (周) (日) (日)

RL in Practise: Temporal Difference (TD) Rule

Animals use derivative: No prediction Reward occurs

R

Remember value iteration.

TD rule:

Use derivative when going $s \rightarrow s'$:

$$V(s) \leftarrow V(s) + \alpha (R(s) + \gamma V(s') - V(s))$$

where:

 α is the learning rate, and

 $\gamma\,$ is the discount factor.

Reward predicted Beward occurs

Spring 2013

RL in Practise: Temporal Difference (TD) Rule

Animals use derivative:

Remember value iteration:

$$V(s) \leftarrow \left[\arg \max_{a} \gamma \sum_{s'} P(s'|s, a) V(s') \right] + R(s).$$

TD rule:

Use derivative when going $s \rightarrow s'$:

$$V(s) \leftarrow V(s) + \alpha (R(s) + \gamma V(s') - V(s))$$

Image: Image:

where:

 $\alpha\,$ is the learning rate, and

 γ is the discount factor.

It's even simpler than before!

Ch. 21 – Reinforcement Learning

Spring 2013

14 / 23

- Keep same policy
- That is, follow same path and update values, V(s)

- Keep same policy
- That is, follow same path and update values, V(s)

To mimic increasing confidence, reduce learning rate with number of visits, N(s):

$$\alpha = \frac{1}{N(s) + 1}$$

like in simulated annealing.

- Keep same policy
- That is, follow same path and update values, V(s)

To mimic increasing confidence, reduce learning rate with number of visits, N(s):

$$\alpha = \frac{1}{\mathsf{N}(s) + 1}$$

like in **simulated annealing**. TD rule:

$$V(s) \leftarrow V(s) + rac{1}{N(s)+1} \left(R(s) + \gamma V(s') - V(s)
ight)$$

For simplicity, $\gamma = 1$.

	Ν	V(s)	Δ
$a3 \rightarrow a4$	1	0	1/2

э

$$egin{array}{rcl} V(s) &\leftarrow V(s)+\Delta \ \Delta &=& rac{1}{N(s)+1} \left(R(s)+\gamma V(s')-V(s)
ight) \end{array}$$

For simplicity, $\gamma = 1$.

	Ν	V(s)	Δ
$a3 \rightarrow a4$	1	0	1/2
$a2 \rightarrow a3$	2	0	1/6

Image: A matrix and a matrix

$$V(s) \leftarrow V(s) + \Delta$$

$$\Delta = \frac{1}{N(s) + 1} (R(s) + \gamma V(s') - V(s))$$

Image: Image:

For simplicity, $\gamma = 1$.

	Ν	V(s)	Δ
$a3 \rightarrow a4$	1	0	1/2
$a2 \rightarrow a3$	2	0	1/6
$a3 \to a4$	2	1/2	1/6

Spring 2013 16 / 23

æ

$$V(s) \leftarrow V(s) + \Delta$$

 $\Delta = \frac{1}{N(s) + 1} (R(s) + \gamma V(s') - V(s))$

For simplicity, $\gamma = 1$.

	Ν	V(s)	Δ
$a3 \rightarrow a4$	1	0	1/2
$a2 \to a3$	2	0	1/6
$a3 \to a4$	2	1/2	1/6

• Convergence time?

Günay

Spring 2013 16 / 23

э

Passive RL: Problems?

Günay

Ch. 21 – Reinforcement Learning

Spring 2013 17

17 / 23

Passive RL: Problems?

- Limited by constant policy?
- Fewer visited states cause poor estimate?

Active RL: Example

- Greedy algorithm
- After updating V(s) and N(s), recalculate policy $\pi(s)$

Active RL: Example

- Greedy algorithm
- After updating V(s) and N(s), recalculate policy $\pi(s)$

Active RL: Example

- Greedy algorithm
- After updating V(s) and N(s), recalculate policy $\pi(s)$

• Greedy algorithm cannot find optimal policy \Rightarrow needs more exploration

18 / 23

Source of errors:			
Reason for error:	sampling	policy	
V too low			
V too high			
increase N helps?			

• • • • • • • •

Source of errors:		
Reason for error:	sampling	policy
V too low	Т	
V too high	Т	
increase N helps?	Т	

• • • • • • • •

Source of errors:		
Reason for error:	sampling	policy
V too low	Т	Т
V too high	Т	F
increase N helps?	Т	F

• • • • • • • •

Source of errors:		
Reason for error:	sampling	policy
V too low	Т	
V too high	Т	
increase N helps?	Т	

Exploration vs. Exploitation:

- We can't do without it
- We can't live with too much of it

Source of errors:		
Reason for error:	sampling	policy
V too low	Т	
V too high	Т	
increase N helps?	Т	

Exploration vs. Exploitation:

- We can't do without it
- We can't live with too much of it

Exploration:

• Minimize it, use random moves?

- Initialize all V(s) = +R (e.g., +1)
- Until N(s)>e; exploration threshold
- Then use V(s)
- Wait until built confidence

Exploring Agent Does Much Better

A ∰ ► A ∃

Instead of V(s), use Q(s, a):

$$Q(s,a) = \arg \max_{a} V(s)$$

then the value iteration becomes

$$Q(s, a) = R(s) + \gamma \sum_{s'} P(s'|s, a) \arg \max_{a'} Q(s', a')$$

Instead of V(s), use Q(s, a):

$$Q(s,a) = \arg \max_{a} V(s)$$

then the value iteration becomes

$$Q(s, a) = R(s) + \gamma \sum_{s'} P(s'|s, a) \arg \max_{a'} Q(s', a')$$

• State of the art, but also has problems with dimensionality

Q-Learning in Real World Problems

Spring 2013 23 / 23

æ

Q-Learning in Real World Problems

• Translate problem space to feature space: $s = [f_1, \ldots, f_m]$

Spring 2013

23 / 23