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Rats!

Fundooprofessor

Rat put in a cage with lever.
Each lever press sends a
signal to rat’s brain,
to the reward center.

Rat presses lever continously
until . . .
it dies because it stops
eating and drinking.
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Wikipedia.org



Dopamine Neurons Respond to Novelty

sciencemuseum.org.uk

It turns out:
Novelty detection = Temporal Difference rule
in Reinforcement Learning
(Sutton and Barto, 1981)

Schultz et al. (1997)
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Entry/Exit Surveys

Exit survey: Planning Under Uncertainty
Why can’t we use a regular MDP for partially-observable situations?
Give an example where you think MDPs would help you solve a
problem in your daily life.

Entry survey: Reinforcement Learning (0.25 points of final grade)
In a partially-observable scenario, can reinforcement be used to learn
MDP rewards?
How can we improve MDP by using the plan-execute cycle?
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Blindfolded MDPs: Enter Reinforcement Learning

1 2 3 4
a G
b xt
c S

What if the agent does not know anything about:
where walls are
where goals/penalties are

Can we use the plan-execute cycle?

Explore first
Update world state based on reward/reinforcement

⇒ Reinforcement Learning (see Scholarpedia article)
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Where Does Reinforcement Learning Fit?

Machine learning so far:

Unsupervised learning: find regularities in input data, x
Supervised learning: find mapping between input and output, f (x)→ y
Reinforcement learning: find mapping between states and actions, s → a

(by finding optimal policy, π(s)→ a)

Which is it?
S U R

X

Speech recognition: connect sounds to transcripts

X

Star data: find groupings from spectral emissions

X

Rat presses lever: gets reward based on certain conditions

X

Elevator controller: multiple elevators, minimize wait time
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But, Wasn’t That What Markov Decision Processes Were?

Find optimal policy to maximize reward:

π(s) = argmax
π

E

[ ∞∑
t=0

γtR(s, π(s), s ′)

]
,

with reward at state: R(s), or from action, R(s, a, s ′).

By estimating utility values:

V (s)←

[
argmax

a
γ
∑
s′

P(s ′|s, a)V (s ′)

]
+ R(s) ,

with transition probabilities: P(s ′|s, a)

Assumes we know R(s) and P(s ′|s, a)
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Blindfolded Agent Must Learn From Rewards

Don’t know R(s) or P(s ′|s, a). What to do?

Use Reinforcement Learning (RL) to explore and find rewards

Agent types:

knows learns uses
Utility agent P R → U U

Q-learning (RL) Q(s, a) Q
Reflex π(s)
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Video: Backgammon and Choppers

https://www.youtube.com/watch?v=dqH6tp49uFY&feature=player_embedded#t=31s


How Much to Learn?

1 Passive RL: Simple Case

Keep policy π(s) fixed, learn others
Always do same actions, and learn utilities
Examples:

public transit commute
learning a difficult game

2 Active RL

Learn policy at the same time
Help explore better by changing policy
Example: drive own car
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RL in Practise: Temporal Difference (TD) Rule

Animals use derivative: Remember value iteration:

V (s)←

[
argmax

a
γ
∑
s′

P(s ′|s, a)V (s ′)

]
+ R(s) .

TD rule:
Use derivative when going s → s ′:

V (s)← V (s) + α
(
R(s) + γV (s ′)− V (s)

)
where:
α is the learning rate, and
γ is the discount factor.

It’s even simpler than before!
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Passive RL: Simple Case

1 2 3 4
a +1
b xt −1
c S

Keep same policy
That is, follow same path and update
values, V (s)

To mimic increasing confidence, reduce learning rate with number of visits,
N(s):

α =
1

N(s) + 1

like in simulated annealing.
TD rule:

V (s)← V (s) +
1

N(s) + 1
(
R(s) + γV (s ′)− V (s)

)
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Passive RL: Simple Case (2)

1 2 3 4
a → → → +1
b ↑ xt −1
c S

V (s) ← V (s) + ∆

∆ =
1

N(s) + 1
(
R(s) + γV (s ′)− V (s)

)
For simplicity, γ = 1.

N V (s) ∆

a3→ a4 1 0 1/2
a2→ a3 2 0 1/6
a3→ a4 2 1/2 1/6

Convergence time?
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Passive RL: Problems?
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Active RL: Example

Greedy algorithm
After updating V (s) and N(s), recalculate policy π(s)
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Greedy algorithm cannot find optimal policy⇒ needs more exploration
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How to Improve Active RL?

Source of errors:
Reason for error: sampling policy

V too low
V too high

increase N helps?

Exploration vs. Exploitation:
We can’t do without it
We can’t live with too much of it

Exploration:
Minimize it, use random moves?
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Exploring Agent

1 2 3 4
a +1 +1 +1 +1
b +1 xt +1 +1
c S +1 +1 +1

Initialize all V (s) = +R (e.g., +1)
Until N(s)>e; exploration threshold
Then use V (s)

Wait until built confidence
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Exploring Agent Does Much Better
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Q-Learning

Instead of V (s), use Q(s, a):

Q(s, a) = argmax
a

V (s)

then the value iteration becomes

Q(s, a) = R(s) + γ
∑
s′

P(s ′|s, a) argmax
a′

Q(s ′, a′)

State of the art, but also has problems with dimensionality
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Q-Learning in Real World Problems

Translate problem space to feature space: s = [f1, . . . , fm]
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