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http://www.imdb.com/title/tt0081505/

@ Rat put in a cage with lever.

@ Each lever press sends a
signal to rat's brain,
to the reward center.
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@ Rat put in a cage with lever.

@ Each lever press sends a
signal to rat's brain,
to the reward center.

@ Rat presses lever continously
until . ..
it dies because it stops
eating and drinking.

Fundooprofessor
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Dopamine Neurons Respond to Novelty
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http://jn.physiology.org/content/80/1/1.long

Dopamine Neurons Respond to Novelty

Schultz et al. (1997)
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It turns out:

Novelty detection = Temporal Difference rule
in Reinforcement Learning 3

(Sutton and Barto, 1981) ) cs o
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Entry/Exit Surveys

Exit survey: Planning Under Uncertainty

@ Why can't we use a regular MDP for partially-observable situations?

@ Give an example where you think MDPs would help you solve a
problem in your daily life.

Entry survey: Reinforcement Learning (0.25 points of final grade)

@ In a partially-observable scenario, can reinforcement be used to learn
MDP rewards?

@ How can we improve MDP by using the plan-execute cycle?
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Blindfolded MDPs: Enter Reinforcement Learning
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What if the agent does not know anything about:
@ where walls are

@ where goals/penalties are
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Blindfolded MDPs: Enter Reinforcement Learning
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What if the agent does not know anything about:
@ where walls are
@ where goals/penalties are

Can we use the plan-execute cycle?

@ Explore first
e Update world state based on reward/reinforcement

= Reinforcement Learning (see Scholarpedia article)
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Where Does Reinforcement Learning Fit?

Machine learning so far:
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Where Does Reinforcement Learning Fit?

Machine learning so far:
Unsupervised learning: find regularities in input data, x
Supervised learning: find mapping between input and output, f(x) — y

Reinforcement learning: find mapping between states and actions, s — a
(by finding optimal policy, 7(s) — a)

Which is it?
S|U|R|
Speech recognition: connect sounds to transcripts
Star data: find groupings from spectral emissions
Rat presses lever: gets reward based on certain conditions
Elevator controller: multiple elevators, minimize wait time
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Where Does Reinforcement Learning Fit?

Machine learning so far:
Unsupervised learning: find regularities in input data, x
Supervised learning: find mapping between input and output, f(x) — y

Reinforcement learning: find mapping between states and actions, s — a
(by finding optimal policy, 7(s) — a)

Which is it?
S|U|R|
X Speech recognition: connect sounds to transcripts
X Star data: find groupings from spectral emissions
X | Rat presses lever: gets reward based on certain conditions
X | Elevator controller: multiple elevators, minimize wait time
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But, Wasn't That What Markov Decision Processes Were?

@ Find optimal policy to maximize reward:

7(s) = arg max E [Z "th(S,ﬂ'(S),S,)] ,

t=0

with reward at state: R(s), or from action, R(s, a,s’).

Giina Spring 2013 10 / 23
y



But, Wasn't That What Markov Decision Processes Were?

@ Find optimal policy to maximize reward:

o
7(s) = argmax E [Z "th(S,ﬂ'(S),S,)] ,
K
t=0
with reward at state: R(s), or from action, R(s, a,s’).
@ By estimating utility values:

V(s) + [arg max Z P(s'|s,a)V(s')| + R(s),

S

with transition probabilities: P(s'|s, a)
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But, Wasn't That What Markov Decision Processes Were?

@ Find optimal policy to maximize reward:

o
7(s) = argmax E [Z "th(S,ﬂ'(S),S,)] ,
K
t=0
with reward at state: R(s), or from action, R(s, a,s’).
@ By estimating utility values:

V(s) + [arg max Z P(s'|s,a)V(s')| + R(s),

S

with transition probabilities: P(s'|s, a)

@ Assumes we know R(s) and P(s'|s, a)
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Blindfolded Agent Must Learn From Rewards

Don't know R(s) or P(s’|s,a). What to do?
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Blindfolded Agent Must Learn From Rewards

Don't know R(s) or P(s’|s,a). What to do?

@ Use Reinforcement Learning (RL) to explore and find rewards

Agent types:

‘ knows ‘ learns ‘ uses

Utility agent P R—U|U
Q-learning (RL) Q(s,a) | Q
Reflex 7(s)
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Video: Backgammon and Choppers



https://www.youtube.com/watch?v=dqH6tp49uFY&feature=player_embedded#t=31s

How Much to Learn?

@ Passive RL: Simple Case

o Keep policy 7(s) fixed, learn others
e Always do same actions, and learn utilities
o Examples:

@ public transit commute
o learning a difficult game
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How Much to Learn?

@ Passive RL: Simple Case

o Keep policy 7(s) fixed, learn others
e Always do same actions, and learn utilities
o Examples:

@ public transit commute
o learning a difficult game

@ Active RL

o Learn policy at the same time
o Help explore better by changing policy
o Example: drive own car
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RL in Practise: Temporal Difference (TD) Rule

Animals use derivative:
No prediction
Reward occurs

Reward predicted
Reward occurs 1
™
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Remember value iteration:

V(s) + [arg max 7y Z P(s'|s,a)V(s)
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RL in Practise: Temporal Difference (TD) Rule

Animals
No prediction
Reward occurs

Reward predicted

Reward occurs

wlaal s

(o CS) R

use derivative:

1""Jnl.x.- FTRT Y

Reward predicted
No reward occurs

ald b

Remember value iteration:

V(s) + [arg max 7y Z P(s'|s,a)V(s")| + R(s).

TD rule:
Use derivative when going s — s’

V(s) < V(s)+a (R(s) +7V(s') — V(s))

where:
« is the learning rate, and

~ is the discount factor.
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RL in Practise: Temporal Difference (TD) Rule

Animals use derivative:

No prediction
Reward occurs

Reward predicted

Reward occurs

wlaal s

(o CS) R

1""Jnl.x.- FTRT Y

Reward predicted
No reward occurs

ald b

Remember value iteration:

V(s) + [arg max 7y Z P(s'|s,a)V(s")| + R(s).

TD rule:
Use derivative when going s — s’

V(s) < V(s)+a (R(s) +7V(s') — V(s))

where:
« is the learning rate, and
~ is the discount factor.

It’s even simpler than before!
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Passive RL: Simple Case

1 3 4

. 2 I o Keep same policy
b h @ That is, follow same path and update

-1
c s values, V(s)
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Passive RL: Simple Case

3 4

1 2 I o Keep same policy

a

b h @ That is, follow same path and update
S|

-1
c values, V(s)

To mimic increasing confidence, reduce learning rate with number of visits,
N(s):

like in simulated annealing.
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Passive RL: Simple Case

3 4

. 1 2 I o Keep same policy
b h 1 @ That is, follow same path and update
S|

c values, V(s)

To mimic increasing confidence, reduce learning rate with number of visits,
N(s):

1
T NG) 1
like in simulated annealing.
TD rule:
1 /
V(s) « V(s) + W (R(s) +V(s') — V(s))
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Passive RL: Simple Case (2)

2 3 4 V(s) <« V(s)+A
1

1 A = N(s) T 1 (R(s) +V(s') — V(s))

n—=| ]|~

For simplicity, v = 1.
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Passive RL: Simple Case (2)

1 2 3 4  y(s) « V(s)+A
a|— — | +1 .
— A = —— (R V(s -V
b [ i 751 (RO V() — V(s)
c| S
For simplicity, v = 1.
| N| V(s)| A
a3—ad| 1] 0 |1/2
a2 — a3 | 2 0 |1/6
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1 2 3 4 V(s) <« V(s)+A
a|— — | +1
b| 1 -1 A = NG +1 (R(s) +V(s') = V(s))
c| S
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Passive RL: Simple Case (2)

4 V(s) <« V(s)+A

+1

— A = ———
1 N(s)+1

n—=| ]|~

For simplicity, v = 1.

| N| V(s)| A
a3 sad| 1| 0 |1/2
a2 — a3 | 2 0 |1/6
a3 —ad | 2 | 1/2 | 1/6

o Convergence time?
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Passive RL: Problems?
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Passive RL: Problems?

Utility estimates
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o Limited by constant policy?

o Fewer visited states cause poor estimate?
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Active RL: Example

o Greedy algorithm
e After updating V/(s) and N(s), recalculate policy 7(s)
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Active RL: Example

o Greedy algorithm
e After updating V/(s) and N(s), recalculate policy 7(s)
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Active RL: Example

o Greedy algorithm
e After updating V/(s) and N(s), recalculate policy 7(s)

2
]m 3 — —- —-
2 RMS error
2151 Policy loss -------
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o
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@ Greedy algorithm cannot find optimal policy=- needs more exploration
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How to Improve Active RL?

Source of errors:

Reason for error: ‘ sampling ‘ policy
V too low
V too high

increase N helps?
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How to Improve Active RL?

Source of errors:

Reason for error: ‘ sampling ‘ policy

V too low T
V too high T
increase N helps? T

Exploration vs. Exploitation:
@ We can't do without it

o We can't live with too much of it
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How to Improve Active RL?

Source of errors:

Reason for error: ‘ sampling ‘ policy

V too low T
V too high T
increase N helps? T

Exploration vs. Exploitation:

@ We can't do without it

@ We can't live with too much of it
Exploration:

@ Minimize it, use random moves?

Giinay Spring 2013 19 / 23



Exploring Agent

1 2 3 4
a[+1[+1[+1]+1
+1 || +1] +1
S | +1[+1]+1

o Initialize all V(s) = +R (e.g., +1)
e Until N(s)>e; exploration threshold
@ Then use V(s)

o Wait until built confidence

Giinay
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Exploring Agent Does Much Better
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Instead of V/(s), use Q(s, a):
Q(s,a) = argmax V(s)
then the value iteration becomes

Q(s,a) = R(s) +~ Z P(s'|s,a) argmax Q(s', a’)

S/
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Instead of V/(s), use Q(s, a):
Q(s,a) = argmax V(s)
then the value iteration becomes

Q(s,a) = R(s) +~ Z P(s'|s,a) argmax Q(s', a’)

S/

o State of the art, but also has problems with dimensionality
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Q-Learning in Real World Problems
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Q-Learning in Real World Problems
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@ Translate problem space to feature space: s = [f, ..., fm]
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