Solving problems by

I searching

Chapter 3

Some slide credits to Hwee Tou Ng (Singapore)

B Outline

Prob
Prob
Prob

em-solving agents
em types
em formulation

Example problems
Basic search algorithms
Heuristics

2013

CS 325 - Ch3 Search

Intelligent agent solves
ol problems by?

d. ?

2013 CS 325 - Ch3 Search 3

Problem-solving agents

]

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state +— UPDATE-STATE(state, percept)

if seq is empty then do
goal < FORMULATE-GOAL(state)
problem <~ FORMULATE-PROBLEM(state, goal)
seq < SEARCH(problem)

action <+ FIRST(seq)

seq < REST(seq)

return action

2013

CS 325 - Ch3 Search 4

W Example: Romania

On holiday in Romania; currently in Arad.

Flight leaves tomorrow from Bucharest
Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:

sequence of cities, e.qg., Arad, Sibiu, Fagaras,
Bucharest

2013 CS 325 - Ch3 Search 5

W Example: Romania

=] Cradea
MNeamt
- a7
T4
=] lasi
AradlT
T . g2
Sibiu gq Fagams
115 u Vaslui
a0 MVaslui
o Rimnicu Vilcea
T|m|5u:-ara -
142
TN 1T
L1l - Lugu:-j Pitesti
70 = a8 .
_ a5 . Hirsowa
M ehadia 101 . Urziceni
b1 25
. & 130 138 Huchamst
Cobreta -
o - L | a0
Craiova Eforie
-] Giurgiu

2013 CS 325 - Ch3 Search 6

B Romania: problem type?

=] Cradea
MNeamt
- a7
T4
=] lasi
AradlT
T . g2
Sibiu gq Fagams
115 u Vaslui
a0 MVaslui
o Rimnicu Vilcea
T|m|5u:-ara -
142
TN 1T
L1l - Lugu:-j Pitesti
70 = a8 .
_ a5 . Hirsowa
M ehadia 101 . Urziceni
b1 25
. & 130 138 Huchamst
Cobreta -
o - L | a0
Craiova Eforie
-] Giurgiu

2013 CS 325 - Ch3 Search 7

W Romania: Problem type

Deterministic, fully observable - single-state
problem

Agent knows exactly which state it will be in; solution is a
sequence

*= Non-observable - sensorless problem (conformant
problem)
Agent may have no idea where it is; solution is a sequence

= Nondeterministic and/or partially observable -
contingency problem
percepts provide new information about current state
often interleave} search, execution

= Unknown state space - exploration problem

2013 CS 325 - Ch3 Search 8

0 Single-state problem
® formulation

A problem is defined by four items:

Initial state e.q., "at Arad"

actions or successor function S(x) = set of action-state pairs
e.qg., S(Arad) = {<Arad 2 Zerind, Zerind>, ... }

goal test, can be
explicit, e.g., x = "at Bucharest"
implicit, e.g., Checkmate(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be = 0

A solution is a sequence of actions leading from the initial
state to a goal state

2013 CS 325 - Ch3 Search 9

W Tree search algorithms

Basic idea:

offline, simulated exploration of state space by
generating successors of already-explored states
(a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

2013 CS 325 - Ch3 Search 10

@ Tree search example

2013 CS 325 - Ch3 Search

11

W Tree search example

2013 CS 325 - Ch3 Search

12

W Tree search example

2013 CS 325 - Ch3 Search

13

Implementation: general tree
search

2013

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node <+ REMOVE-FRONT(fringe)
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
fringe < INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors <— the empty set

for each action, result in SUCCESSOR-F'N[problem|(STATE[node]) do
s <—a new NODE
PARENT-NODE[s] < node; ACTION[s] < action; STATE[s| result
PATH-COST[s] «— PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] «— DEPTH[node] + 1
add s to successors

return successors

CS 325 - Ch3 Search 14

Uninformed search
ol strategies

Jninformed search strategies use only
the information available in the
problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search

2013 CS 325 - Ch3 Search 15

W Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors

go at end
>@

2013 CS 32Zb - Ch3 Search 16

W Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, I.e., new
successors go at end

(4,
D& ©

2013 CS 325 - Ch3 Search 17

W Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors
go at end

(&, > (<
OO

2013 LD 040 - UIIo dediull 18

W Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors
go at end

(B, (S
PO © © ©

2013 CS 325 - Ch3 Search 19

M Example: Romania (Q)

=] Cradea
MNeamt
- a7
T4
=] lasi
AradlT
T . g2
Sibiu gq Fagams
115 u Vaslui
a0 MVaslui
o Rimnicu Vilcea
T|m|5u:-ara -
142
TN 1T
L1l - Lugu:-j Pitesti
70 = a8 .
_ a5 . Hirsowa
M ehadia 101 . Urziceni
b1 25
. & 130 138 Huchamst
Cobreta -
o - L | a0
Craiova Eforie
-] Giurgiu

2013 CS 325 - Ch3 Search 20

W Search strategies

A search strategy is defined by picking the order of
node expansion

Strategies are evaluated along the following
dimensions:
completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms
of

b: maximum branching factor of the search tree
d: depth of the least-cost solution
m: maximum depth of the state space (may be x)

2013 CS 325 - Ch3 Search 21

0 Properties of breadth-first
- search

Complete? Yes (if b is finite)
Time? 1+b+b?+b3+...+b + b(b?-1) = O(bd+1)

Space? O(b9*1) (keeps every node in
memory)

Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than
time)

2013 CS 325 - Ch3 Search 22

W Uniform-cost search

2013 CS 325 - Ch3 Search

23

http://www.udacity.com/view#Course/cs271/CourseRev/1/Unit/40001/Nugget/69001

W Uniform-cost search

Expand least-cost unexpanded node
Implementation:

fringe = queue ordered by path cost
Equivalent to breadth-first if step costs all equal
Complete? Yes, if step cost = €

Time? # of nodes with g = cost of optimal solution,
O(bceling€78)) where C* Is the cost of the optimal
solution

Space? # of nodes with g = cost of optimal solution,
O (bcei/ing(C*/ e))

Optimal? Yes - nodes expanded in increasing order
of g(n)

2013 CS 325 - Ch3 Search 24

W Comparison of Searches

So far:

* Breadth-first search

* Uniform-cost (cheapest) search
* New: Depth-first search
Optimal?

2013 CS 325 - Ch3 Search 25

W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2©.

2013 CS 325 - Ch3 Search 26

W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 27

W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 28

W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 29

W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 30

W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 31

W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 32

W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 33

W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 34

W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

G
p(F))

2013 CS 325 - Ch3 Search 35

W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 36

W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 37

W Why depth-first?

2013 CS 325 - Ch3 Search

38

0 Properties of depth-first
- search

Complete? No: fails in infinite-depth spaces,
spaces with loops

Modify to avoid repeated states along path
- complete in finite spaces

Time? O(b™): terrible if m >> d

but if solutions are dense, may be much faster
than breadth-first

Space? O(bm), i.e., linear space!
Optimal? No

2013 CS 325 - Ch3 Search 39

W Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time oY) o€y owm) O(b) O(b?)
Space OB+t oI /)y O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

2013 CS 325 - Ch3 Search 40

w Limitations

2013 CS 325 - Ch3 Search

41

http://www.udacity.com/view#Course/cs271/CourseRev/1/Unit/40001/Nugget/83001

@est-first search

ldea: use an evaluation function f(n) for each node

estimate of "desirability"
< Expand most desirable unexpanded node

Implementation:

Order the nodes in fringe in decreasing order of
desirability

Special cases:
greedy best-first search
A" search

Romania with step costs In km

Straight—line distance

i Bucharest
Arad W6
Bucharest 0
75 Crawva L&0
Dobreta 147
Arad [Eforie 1a1
IFagaras 176
118 Giurgiu T
80 [] Vaslui Hir.sm'a 151
Ias 2256
Rimnieu Vikea Lugoj 244
Mehadia 141
Meamt 134
Oradea 180
Pitesti L0
o Hirscva Rimnku Vikea g3
Sibiu 153
Timisoara 329
Urzkceni B0
Eforie Yashui 196

Zerind 174

@reedy best-first search

Evaluation function f(n) = h(n)
(heuristic)

= estimate of cost from n to goal
e.g., h,,,(n) = straight-line distance
from n to Bucharest

Greedy best-first search expands the
node that appears to be closest to goal

gpree
d
y b
=
ﬂ st-first
Sea
rch

ﬂreedy best-first search

ﬂreedy best-first search

reedy best-first search

< Amd

e . —
< Sbiu imisoara,
L

I

32 a4

\ﬂroperties of greedy best-

» Complete? No - can get stuck in
loops, e.qg., lasi > Neamt = lasi 2
Neamt -

 Time? O(b™), but a good heuristic can
give dramatic improvement

* Space? O(b™) -- keeps all nodes In
memory

 Optimal? No

W* search

ldea: avoid expanding paths that are
already expensive

Evaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path
through n to goal

W* search example

AGE=0+368

W* search example

" search example

Ch=d o

——

<_sku
—F 447=118+329

G46=280+366 4+15=239+176 671=291+380 4+13=220+193

" search example

Cﬂmﬂ}

""'l:‘_---...

=T '1-\.__ T —

B
— -:‘7'<'----- H47=118+329 449=T5+374

G46=280+366 4+15=239+176 671= 2914-3»50

{Clabu’a) L4 F‘IIEED ¥ { Sblu ¥

526=366+180 417=317+100 553=300+253

" search example

Cﬂmﬂ}

""'l:‘_---...

T 'w-\.__

<_sku
"'\ 447=118+329

’
G465=280+3865 / \'\.\ 671= 291+3.EU ;

A~ ., £ ———

591=338+253 450=450+0 26=366+160 4+17=317+100 553=300+253

search example

Cﬁ_mﬂ:)

"'"'2‘_' e

i -,___.

< S*““‘D

3’ Ny H47=118+329

m

G46=280+366 0 x\ 5?1 2914-3-50

581=338+253 450=450+0 526—EEB+1EU T "“---5_ _553=300+253

PETTD T D

418=418+0 G15=455+160 GOT=414+183

@ State Spaces

W Example: vacuum world

Single-state, start in #5.

. 1 | =) 2
Solution? R | opm o3
3 |.=d) 4
R oFR
5 | =) 6
oH
7 | =) 8

A [BR[L A [#A

2013 CS 325 - Ch3 Search 58

W Example: vacuum world

Single-state, start in #5.

. . 1 E
Solution? [Right, Suck] = - |8
Sensorless, start in 3 | =) 4 =
{1,2,3,4,5,6,7,8} e.q., e e
Right goes to {2,4,6,8} ¢ 4 5 4
Solution? Fh off

7 | =) 8 =)

2013 CS 325 - Ch3 Search 59

W Example: vacuum world

Sensorless, start in 1 | =) 2
{1,2,3,4,5,6,7,8} e.q., e | wR i
Right goes to {2,4,6,8}

Solution? : f) 38
[Right,Suck,Left,Suck]
5 | =) 6
oA

Contingency

Nondeterministic: Suck may 7 |« 8
dirty a clean carpet

A [#R) | A 2L

Partially observable: location, dirt at current location.

Percept: [L, Clean], i.e., start in #5 or #7
Solution?

2013 CS 325 - Ch3 Search 60

W Example: vacuum world

Sensorless, start in 1 | =) 2
{1,2,3,4,5,6,7,8} e.q., e | o
Right goes to {2,4,6,8} 3 [2
Solution? R oFR
[Right,Suck,Left,Suck]

5 | A - 6

Contingency

Nondeterministic: Suck may 7 =] 8
dirty a clean carpet

A [#A) | A 2K

Partially observable: location, dirt at current location.

Percept: [L, Clean], i.e., start in #5 or #7
Solution? [Right, if dirt then Suck]

2013 CS 325 - Ch3 Search 61

B Selecting a state space

Real world is absurdly complex
- state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real
actions

e.g., "Arad = Zerind" represents a complex set of possible
routes, detours, rest stops, etc.

For guaranteed realizability, any real state "in Arad
must get to some real state "in Zerind"

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be "easier" than the
original problem

']

2013 CS 325 - Ch3 Search 62

Vacuum world state space

W graph

) i =4[\n
C uMIN 9
= states. : :
= actions?
= goal test?
= path cost?

2013 CS 325 - Ch3 Search 63

Vacuum world state space

(el e

/15
=

e [T O (&L T [0
- : : -

L =) - A =

C AL 9

states? integer dirt and robot location

actions? Left, Right, Suck

goal test? no dirt at all locations

path cost? 1 per action

2013 CS 325 - Ch3 Search 64

MW Modified vacuum world?

2013 CS 325 - Ch3 Search 65

@ Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8
= states?
= actions?

= goal test?
= path cost?

2013 CS 325 - Ch3 Search 66

W Example: The 8-puzzle

7 2 4 1 2
S 6 3 4 S
8 3 1 6 7 8

Start State Goal State

states? locations of tiles

actions? move blank left, right, up, down
goal test? = goal state (given)

path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

2013 CS 325 - Ch3 Search 67

B Example: robotic assembly

oyl %

states?: real-valued coordinates of robot joint
angles parts of the object to be assembled

actions?: continuous motions of robot joints
goal test?: complete assembly
path cost?: time to execute

2013 CS 325 - Ch3 Search 68

uulmplementation: states vs. nodes

A state is a (representation of) a physical

configuration

A node is a data structure constituting part of a
search tree includes state, parent node, action, path

cost g(x), depth

State || 5 4

6 1

7 3

parent, action
A

depth = 6
g=6

The Expand function creates new nodes, filling in the
various fields and using the SuccessorFn of the
problem to create the corresponding states.

2013 CS 325 - Ch3 Search

69

Depth-limited search

3

= depth-first search with depth limit /,
l.e., nodes at depth / have no successors

= Recursive implementation:

2013

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE- DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? + false
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
else if DEPTH[node| = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result +— RECURSIVE- DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # faiure then return result
if cutoff-occurred? then return cutoff else return failure

CS 325 - Ch3 Search 70

W Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth<+ 0 to oo do
result < DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

2013 CS 325 - Ch3 Search 71

Iterative deepening search
_

Limit =0 +(2) []

2013 CS 325 - Ch3 Search 72

Iterative deepening search

_ -

2013 CS 325 - Ch3 Search /3

Iterative deepening search

_ S

S S T S

2013 CS 325 - Ch3 Search 74

0 lterative deepening search
\ [=3

Limit =3 10

i

o
- ni

2013 CS 325 - Ch3 Search 75

ReF
£
i

B Iterative deepening search

Number of nodes generated in a depth-limited search
to depth d with branching factor b:

No,s = b+ bl + b2 + ... + bd2 + bé1 + pe

Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

N = (d+1)b° + d b! + (d-1)b? + ... + 3b%2 +2bd1 + 1bd

Forb=10,d =5,
N,.=1+ 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
N, =6+ 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 -111,111)/111,111 = 11%

2013 CS 325 - Ch3 Search 76

Properties of iterative
ol deepening search

Complete? Yes

Time? (d+1)b° + d b + (d-1)b? + ...

b = O(b9)
Space? O(bd)
Optimal? Yes, if step cost =1

2013 CS 325 - Ch3 Search 77

deissible heuristics

A heuristic h(n) is admissible if for every
node n,

h(n) < h*(n), where h*(n) is the true cost to
reach the goal state from n.

An admissible heuristic never overestimates

the cost to reach the goal, i.e., it is

optimistic

Example: h,,,(n) (never overestimates the

actual road distance)

* Theorem: If h(n) is admissible, A* using
TREE - SEARCH Is optimal

Wptimality of A* (proof)

Suppose some suboptimal goal G, has been generated and is

in the fringe. Let n be an unexpanded node in the fringe such
that n is on a shortest path to an optimal goal G.

Sreart

N

]
QO &,

f(G,) = 9(G,) since h(G,) =0

a9(G,) > g(G) since G, is suboptimal
f(G) = g(G) since h(G) =0

f(G,) > f(G) from above

$onsistent heuristics

A heuristic is consistent if for every node n, every successor n'
of n generated by any action a,

h(n) < c(n,a,n') + h(n')

c(n,a,n’)
If h is consistent, we have
f(n') = g(n') + h(n')
= g(n) + c(n,a,n’) + h(n')
= g(n) + h(n)
= f(n)

l.e., f(n) is non-decreasing along any path.

* Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is
optimal

®ptimality of A*

A" expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes
Contour i has all nodes with f=f, where f, < f_,

Broperties of A$"~*$

» Complete? Yes (unless there are
infinitely many nodes with f = f(G))

 Time? Exponential
* Space? Keeps all nodes in memory
* Optimal? Yes

@dmissible heuristics

E.g., for the 8-puzzle:

h,(n) = number of misplaced tiles
h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

1

4

7 2 4
S 6
8 3 1

7

Start State

Goal State

deissible heuristics

E.g., for the 8-puzzle:
h,(n) = number of misplaced tiles

h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1

5 6 3 4

8 3 1 6 7
Start State Goal State

- h,(5) =78
e h(S) =7 3+1+4+2+2+2+3+3+2 =18

W Repeated states

Failure to detect repeated states can
turn a linear problem into an
exponential one!

2013 CS 325 - Ch3 Search 85

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node +— REMOVE- FRONT(fringe)
if GoAL-TEsT[problem|(STATE[node]) then return SOLUTION(node)
if STATE[node| is not in closed then
add STATE[node] to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)

2013

CS 325 - Ch3 Search 86

W Summary

Problem formulation usually requires abstracting
away real-world details to define a state space that
can feasibly be explored

Variety of uninformed search strategies
Iterative deepening search uses only linear space

and not much more time than other uninformed
algorithms

2013 CS 325 - Ch3 Search 87

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Best-first search
	Romania with step costs in km
	Greedy best-first search
	Greedy best-first search example
	Slide 46
	Slide 47
	Slide 48
	Properties of greedy best-first search
	A* search
	A* search example
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Admissible heuristics
	Optimality of A* (proof)
	Consistent heuristics
	Optimality of A*
	Properties of A*
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

