
Solving problems by 
searching

Chapter 3

Some slide credits to Hwee Tou Ng (Singapore)
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Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Example problems
 Basic search algorithms
 Heuristics
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Intelligent agent solves 
problems by?
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Problem-solving agents
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Example: Romania

 On holiday in Romania; currently in Arad.
 Flight leaves tomorrow from Bucharest
 Formulate goal:

 be in Bucharest
 Formulate problem:

 states: various cities
 actions: drive between cities

 Find solution:
 sequence of cities, e.g., Arad, Sibiu, Fagaras, 

Bucharest
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Example: Romania



2013 CS 325 - Ch3 Search 7

Romania: problem type?
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Romania: Problem type

 Deterministic, fully observable  single-state 
problem

 Agent knows exactly which state it will be in; solution is a 
sequence

 Non-observable  sensorless problem (conformant 
problem)

 Agent may have no idea where it is; solution is a sequence
 Nondeterministic and/or partially observable  

contingency problem
 percepts provide new information about current state
 often interleave} search, execution

 Unknown state space  exploration problem
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Single-state problem 
formulation

A problem is defined by four items:

1. initial state e.g., "at Arad"
2. actions or successor function S(x) = set of action–state pairs 

 e.g., S(Arad) = {<Arad  Zerind, Zerind>, … }
1. goal test, can be

 explicit, e.g., x = "at Bucharest"
 implicit, e.g., Checkmate(x)

1. path cost (additive)
 e.g., sum of distances, number of actions executed, etc.
 c(x,a,y) is the step cost, assumed to be ≥ 0

 A solution is a sequence of actions leading from the initial 
state to a goal state
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Tree search algorithms

 Basic idea:
 offline, simulated exploration of state space by 

generating successors of already-explored states 
(a.k.a. expanding states)
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Tree search example
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Tree search example
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Tree search example
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Implementation: general tree 
search
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Uninformed search 
strategies

 Uninformed search strategies use only 
the information available in the 
problem definition

 Breadth-first search
 Uniform-cost search
 Depth-first search
 Depth-limited search
 Iterative deepening search
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Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors 
go at end
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Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors 
go at end
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Example: Romania (Q)
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Search strategies

 A search strategy is defined by picking the order of 
node expansion

 Strategies are evaluated along the following 
dimensions:

 completeness: does it always find a solution if one exists?
 time complexity: number of nodes generated
 space complexity: maximum number of nodes in memory
 optimality: does it always find a least-cost solution?

 Time and space complexity are measured in terms 
of 

 b: maximum branching factor of the search tree
 d: depth of the least-cost solution
 m: maximum depth of the state space (may be ∞)
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Properties of breadth-first 
search

 Complete? Yes (if b is finite)
 Time? 1+b+b2+b3+…+bd + b(bd-1) = O(bd+1)
 Space? O(bd+1) (keeps every node in 

memory)
 Optimal? Yes (if cost = 1 per step)

 Space is the bigger problem (more than 
time)
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Uniform-cost search

Video

http://www.udacity.com/view#Course/cs271/CourseRev/1/Unit/40001/Nugget/69001
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Uniform-cost search

 Expand least-cost unexpanded node
 Implementation:

 fringe = queue ordered by path cost
 Equivalent to breadth-first if step costs all equal
 Complete? Yes, if step cost ≥ ε
 Time? # of nodes with g ≤ cost of optimal solution, 

O(bceiling(C*/ ε)) where C* is the cost of the optimal 
solution

 Space? # of nodes with g ≤ cost of optimal solution, 
O(bceiling(C*/ ε))

 Optimal? Yes – nodes expanded in increasing order 
of g(n)
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Comparison of Searches

So far:
 Breadth-first search
 Uniform-cost (cheapest) search
 New: Depth-first search
Optimal?
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Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front
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Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front
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Why depth-first?
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Properties of depth-first 
search

 Complete? No: fails in infinite-depth spaces, 
spaces with loops
 Modify to avoid repeated states along path

 complete in finite spaces

 Time? O(bm): terrible if m >> d
  but if solutions are dense, may be much faster 

than breadth-first
 Space? O(bm), i.e., linear space!
 Optimal? No
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Summary of algorithms
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Limitations

Video

http://www.udacity.com/view#Course/cs271/CourseRev/1/Unit/40001/Nugget/83001


  

Best-first search

Idea: use an evaluation function f(n) for each node
estimate of "desirability"

Expand most desirable unexpanded node

Implementation:
Order the nodes in fringe in decreasing order of 
desirability

Special cases:
greedy best-first search
A* search

–



  

Romania with step costs in km



  

Greedy best-first search

Evaluation function f(n) = h(n) 
(heuristic)
= estimate of cost from n to goal
e.g., hSLD(n) = straight-line distance 
from n to Bucharest
Greedy best-first search expands the 
node that appears to be closest to goal



  

Greedy best-first search 
example
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Greedy best-first search 
example



  

Properties of greedy best-
first search
• Complete? No – can get stuck in 

loops, e.g., Iasi  Neamt  Iasi  
Neamt  

• Time? O(bm), but a good heuristic can 
give dramatic improvement

• Space? O(bm) -- keeps all nodes in 
memory

• Optimal? No



  

A* search

Idea: avoid expanding paths that are 
already expensive
Evaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal
f(n) = estimated total cost of path 
through n to goal



  

A* search example



  

A* search example
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A* search example



  

State Spaces
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Example: vacuum world

 Single-state, start in #5. 
Solution?
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Example: vacuum world

 Single-state, start in #5. 
Solution? [Right, Suck]

 Sensorless, start in 
{1,2,3,4,5,6,7,8} e.g., 
Right goes to {2,4,6,8} 
Solution?
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Example: vacuum world

 Sensorless, start in 
{1,2,3,4,5,6,7,8} e.g., 
Right goes to {2,4,6,8} 
Solution? 
[Right,Suck,Left,Suck]

 Contingency 
 Nondeterministic: Suck may 

dirty a clean carpet
 Partially observable: location, dirt at current location.
 Percept: [L, Clean], i.e., start in #5 or #7

Solution?
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Example: vacuum world

 Sensorless, start in 
{1,2,3,4,5,6,7,8} e.g., 
Right goes to {2,4,6,8} 
Solution? 
[Right,Suck,Left,Suck]

 Contingency 
 Nondeterministic: Suck may 

dirty a clean carpet
 Partially observable: location, dirt at current location.
 Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]
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Selecting a state space

 Real world is absurdly complex 
 state space must be abstracted for problem solving

 (Abstract) state = set of real states
 (Abstract) action = complex combination of real 

actions
 e.g., "Arad  Zerind" represents a complex set of possible 

routes, detours, rest stops, etc. 
 For guaranteed realizability, any real state "in Arad“ 

must get to some real state "in Zerind"
 (Abstract) solution = 

 set of real paths that are solutions in the real world
 Each abstract action should be "easier" than the 

original problem
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Vacuum world state space 
graph

 states?
 actions?
 goal test?
 path cost?
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Vacuum world state space 
graph

 states? integer dirt and robot location 
 actions? Left, Right, Suck
 goal test? no dirt at all locations
 path cost? 1 per action
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Modified vacuum world?
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Example: The 8-puzzle

 states?
 actions?
 goal test?
 path cost?
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Example: The 8-puzzle

 states? locations of tiles 
 actions? move blank left, right, up, down 
 goal test? = goal state (given)
 path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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Example: robotic assembly

 states?: real-valued coordinates of robot joint 
angles parts of the object to be assembled

 actions?: continuous motions of robot joints
 goal test?: complete assembly
 path cost?: time to execute
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Implementation: states vs. nodes

 A state is a (representation of) a physical 
configuration

 A node is a data structure constituting part of a 
search tree includes state, parent node, action, path 
cost g(x), depth

 The Expand function creates new nodes, filling in the 
various fields and using the SuccessorFn of the 
problem to create the corresponding states.



2013 CS 325 - Ch3 Search 70

Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

 Recursive implementation:
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Iterative deepening search
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Iterative deepening search 
l =0



2013 CS 325 - Ch3 Search 73

Iterative deepening search 
l =1
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Iterative deepening search 
l =2
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Iterative deepening search 
l =3
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Iterative deepening search

 Number of nodes generated in a depth-limited search 
to depth d with branching factor b: 

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd 

 Number of nodes generated in an iterative deepening 
search to depth d with branching factor b: 

NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd 

 For b = 10, d = 5,
 NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
 NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

 Overhead = (123,456 - 111,111)/111,111 = 11%
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Properties of iterative 
deepening search

 Complete? Yes
 Time? (d+1)b0 + d b1 + (d-1)b2 + … + 

bd = O(bd)
 Space? O(bd)
 Optimal? Yes, if step cost = 1



  

Admissible heuristics

A heuristic h(n) is admissible if for every 
node n,

h(n) ≤ h*(n), where h*(n) is the true cost to 
reach the goal state from n.

An admissible heuristic never overestimates 
the cost to reach the goal, i.e., it is 
optimistic
Example: hSLD(n) (never overestimates the 
actual road distance)
• Theorem: If h(n) is admissible, A* using 
TREE-SEARCH is optimal



  

Optimality of A* (proof)

Suppose some suboptimal goal G2 has been generated and is 
in the fringe. Let n be an unexpanded node in the fringe such 
that n is on a shortest path to an optimal goal G.

f(G2)  = g(G2) since h(G2) = 0 

g(G2) > g(G) since G2 is suboptimal 

f(G)   = g(G) since h(G) = 0 
f(G2)  > f(G) from above 



  

Consistent heuristics
A heuristic is consistent if for every node n, every successor n' 
of n generated by any action a, 

h(n) ≤ c(n,a,n') + h(n')

If h is consistent, we have
f(n') = g(n') + h(n') 
      = g(n) + c(n,a,n') + h(n') 
      ≥ g(n) + h(n) 
      = f(n)
i.e., f(n) is non-decreasing along any path.
• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is 

optimal

  



  

Optimality of A*

A* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes 
Contour i has all nodes with f=fi, where fi < fi+1



  

Properties of A$^*$

• Complete? Yes (unless there are 
infinitely many nodes with f ≤ f(G) )

• Time? Exponential
• Space? Keeps all nodes in memory
• Optimal? Yes



  

Admissible heuristics
E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles

h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 

• h2(S) = ? 

•



  

Admissible heuristics
E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles

h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18 
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Repeated states

 Failure to detect repeated states can 
turn a linear problem into an 
exponential one!
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Graph search
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Summary

 Problem formulation usually requires abstracting 
away real-world details to define a state space that 
can feasibly be explored

 Variety of uninformed search strategies

 Iterative deepening search uses only linear space 
and not much more time than other uninformed 
algorithms


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Best-first search
	Romania with step costs in km
	Greedy best-first search
	Greedy best-first search example
	Slide 46
	Slide 47
	Slide 48
	Properties of greedy best-first search
	A* search
	A* search example
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Admissible heuristics
	Optimality of A* (proof)
	Consistent heuristics
	Optimality of A*
	Properties of A$^*$
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

