
Solving problems by
searching

Chapter 3

Some slide credits to Hwee Tou Ng (Singapore)

2013 CS 325 - Ch3 Search 2

Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Example problems
 Basic search algorithms
 Heuristics

2013 CS 325 - Ch3 Search 3

Intelligent agent solves
problems by?

2013 CS 325 - Ch3 Search 4

Problem-solving agents

2013 CS 325 - Ch3 Search 5

Example: Romania

 On holiday in Romania; currently in Arad.
 Flight leaves tomorrow from Bucharest
 Formulate goal:

 be in Bucharest
 Formulate problem:

 states: various cities
 actions: drive between cities

 Find solution:
 sequence of cities, e.g., Arad, Sibiu, Fagaras,

Bucharest

2013 CS 325 - Ch3 Search 6

Example: Romania

2013 CS 325 - Ch3 Search 7

Romania: problem type?

2013 CS 325 - Ch3 Search 8

Romania: Problem type

 Deterministic, fully observable single-state
problem

 Agent knows exactly which state it will be in; solution is a
sequence

 Non-observable sensorless problem (conformant
problem)

 Agent may have no idea where it is; solution is a sequence
 Nondeterministic and/or partially observable

contingency problem
 percepts provide new information about current state
 often interleave} search, execution

 Unknown state space exploration problem

2013 CS 325 - Ch3 Search 9

Single-state problem
formulation

A problem is defined by four items:

1. initial state e.g., "at Arad"
2. actions or successor function S(x) = set of action–state pairs

 e.g., S(Arad) = {<Arad Zerind, Zerind>, … }
1. goal test, can be

 explicit, e.g., x = "at Bucharest"
 implicit, e.g., Checkmate(x)

1. path cost (additive)
 e.g., sum of distances, number of actions executed, etc.
 c(x,a,y) is the step cost, assumed to be ≥ 0

 A solution is a sequence of actions leading from the initial
state to a goal state

2013 CS 325 - Ch3 Search 10

Tree search algorithms

 Basic idea:
 offline, simulated exploration of state space by

generating successors of already-explored states
(a.k.a. expanding states)

2013 CS 325 - Ch3 Search 11

Tree search example

2013 CS 325 - Ch3 Search 12

Tree search example

2013 CS 325 - Ch3 Search 13

Tree search example

2013 CS 325 - Ch3 Search 14

Implementation: general tree
search

2013 CS 325 - Ch3 Search 15

Uninformed search
strategies

 Uninformed search strategies use only
the information available in the
problem definition

 Breadth-first search
 Uniform-cost search
 Depth-first search
 Depth-limited search
 Iterative deepening search

2013 CS 325 - Ch3 Search 16

Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors
go at end

2013 CS 325 - Ch3 Search 17

Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new
successors go at end

2013 CS 325 - Ch3 Search 18

Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors
go at end

2013 CS 325 - Ch3 Search 19

Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors
go at end

2013 CS 325 - Ch3 Search 20

Example: Romania (Q)

2013 CS 325 - Ch3 Search 21

Search strategies

 A search strategy is defined by picking the order of
node expansion

 Strategies are evaluated along the following
dimensions:

 completeness: does it always find a solution if one exists?
 time complexity: number of nodes generated
 space complexity: maximum number of nodes in memory
 optimality: does it always find a least-cost solution?

 Time and space complexity are measured in terms
of

 b: maximum branching factor of the search tree
 d: depth of the least-cost solution
 m: maximum depth of the state space (may be ∞)

2013 CS 325 - Ch3 Search 22

Properties of breadth-first
search

 Complete? Yes (if b is finite)
 Time? 1+b+b2+b3+…+bd + b(bd-1) = O(bd+1)
 Space? O(bd+1) (keeps every node in

memory)
 Optimal? Yes (if cost = 1 per step)

 Space is the bigger problem (more than
time)

2013 CS 325 - Ch3 Search 23

Uniform-cost search

Video

http://www.udacity.com/view#Course/cs271/CourseRev/1/Unit/40001/Nugget/69001

2013 CS 325 - Ch3 Search 24

Uniform-cost search

 Expand least-cost unexpanded node
 Implementation:

 fringe = queue ordered by path cost
 Equivalent to breadth-first if step costs all equal
 Complete? Yes, if step cost ≥ ε
 Time? # of nodes with g ≤ cost of optimal solution,

O(bceiling(C*/ ε)) where C* is the cost of the optimal
solution

 Space? # of nodes with g ≤ cost of optimal solution,
O(bceiling(C*/ ε))

 Optimal? Yes – nodes expanded in increasing order
of g(n)

2013 CS 325 - Ch3 Search 25

Comparison of Searches

So far:
 Breadth-first search
 Uniform-cost (cheapest) search
 New: Depth-first search
Optimal?

2013 CS 325 - Ch3 Search 26

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 27

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 28

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 29

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 30

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 31

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 32

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 33

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 34

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 35

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 36

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 37

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

2013 CS 325 - Ch3 Search 38

Why depth-first?

2013 CS 325 - Ch3 Search 39

Properties of depth-first
search

 Complete? No: fails in infinite-depth spaces,
spaces with loops
 Modify to avoid repeated states along path

 complete in finite spaces

 Time? O(bm): terrible if m >> d
 but if solutions are dense, may be much faster

than breadth-first
 Space? O(bm), i.e., linear space!
 Optimal? No

2013 CS 325 - Ch3 Search 40

Summary of algorithms

2013 CS 325 - Ch3 Search 41

Limitations

Video

http://www.udacity.com/view#Course/cs271/CourseRev/1/Unit/40001/Nugget/83001

Best-first search

Idea: use an evaluation function f(n) for each node
estimate of "desirability"

Expand most desirable unexpanded node

Implementation:
Order the nodes in fringe in decreasing order of
desirability

Special cases:
greedy best-first search
A* search

–

Romania with step costs in km

Greedy best-first search

Evaluation function f(n) = h(n)
(heuristic)
= estimate of cost from n to goal
e.g., hSLD(n) = straight-line distance
from n to Bucharest
Greedy best-first search expands the
node that appears to be closest to goal

Greedy best-first search
example

Greedy best-first search
example

Greedy best-first search
example

Greedy best-first search
example

Properties of greedy best-
first search
• Complete? No – can get stuck in

loops, e.g., Iasi Neamt Iasi
Neamt

• Time? O(bm), but a good heuristic can
give dramatic improvement

• Space? O(bm) -- keeps all nodes in
memory

• Optimal? No

A* search

Idea: avoid expanding paths that are
already expensive
Evaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal
f(n) = estimated total cost of path
through n to goal

A* search example

A* search example

A* search example

A* search example

A* search example

A* search example

State Spaces

2013 CS 325 - Ch3 Search 58

Example: vacuum world

 Single-state, start in #5.
Solution?

2013 CS 325 - Ch3 Search 59

Example: vacuum world

 Single-state, start in #5.
Solution? [Right, Suck]

 Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?

2013 CS 325 - Ch3 Search 60

Example: vacuum world

 Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

 Contingency
 Nondeterministic: Suck may

dirty a clean carpet
 Partially observable: location, dirt at current location.
 Percept: [L, Clean], i.e., start in #5 or #7

Solution?

2013 CS 325 - Ch3 Search 61

Example: vacuum world

 Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

 Contingency
 Nondeterministic: Suck may

dirty a clean carpet
 Partially observable: location, dirt at current location.
 Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]

2013 CS 325 - Ch3 Search 62

Selecting a state space

 Real world is absurdly complex
 state space must be abstracted for problem solving

 (Abstract) state = set of real states
 (Abstract) action = complex combination of real

actions
 e.g., "Arad Zerind" represents a complex set of possible

routes, detours, rest stops, etc.
 For guaranteed realizability, any real state "in Arad“

must get to some real state "in Zerind"
 (Abstract) solution =

 set of real paths that are solutions in the real world
 Each abstract action should be "easier" than the

original problem

2013 CS 325 - Ch3 Search 63

Vacuum world state space
graph

 states?
 actions?
 goal test?
 path cost?

2013 CS 325 - Ch3 Search 64

Vacuum world state space
graph

 states? integer dirt and robot location
 actions? Left, Right, Suck
 goal test? no dirt at all locations
 path cost? 1 per action

2013 CS 325 - Ch3 Search 65

Modified vacuum world?

2013 CS 325 - Ch3 Search 66

Example: The 8-puzzle

 states?
 actions?
 goal test?
 path cost?

2013 CS 325 - Ch3 Search 67

Example: The 8-puzzle

 states? locations of tiles
 actions? move blank left, right, up, down
 goal test? = goal state (given)
 path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

2013 CS 325 - Ch3 Search 68

Example: robotic assembly

 states?: real-valued coordinates of robot joint
angles parts of the object to be assembled

 actions?: continuous motions of robot joints
 goal test?: complete assembly
 path cost?: time to execute

2013 CS 325 - Ch3 Search 69

Implementation: states vs. nodes

 A state is a (representation of) a physical
configuration

 A node is a data structure constituting part of a
search tree includes state, parent node, action, path
cost g(x), depth

 The Expand function creates new nodes, filling in the
various fields and using the SuccessorFn of the
problem to create the corresponding states.

2013 CS 325 - Ch3 Search 70

Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

 Recursive implementation:

2013 CS 325 - Ch3 Search 71

Iterative deepening search

2013 CS 325 - Ch3 Search 72

Iterative deepening search
l =0

2013 CS 325 - Ch3 Search 73

Iterative deepening search
l =1

2013 CS 325 - Ch3 Search 74

Iterative deepening search
l =2

2013 CS 325 - Ch3 Search 75

Iterative deepening search
l =3

2013 CS 325 - Ch3 Search 76

Iterative deepening search

 Number of nodes generated in a depth-limited search
to depth d with branching factor b:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

 Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

 For b = 10, d = 5,
 NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
 NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

 Overhead = (123,456 - 111,111)/111,111 = 11%

2013 CS 325 - Ch3 Search 77

Properties of iterative
deepening search

 Complete? Yes
 Time? (d+1)b0 + d b1 + (d-1)b2 + … +

bd = O(bd)
 Space? O(bd)
 Optimal? Yes, if step cost = 1

Admissible heuristics

A heuristic h(n) is admissible if for every
node n,

h(n) ≤ h*(n), where h*(n) is the true cost to
reach the goal state from n.

An admissible heuristic never overestimates
the cost to reach the goal, i.e., it is
optimistic
Example: hSLD(n) (never overestimates the
actual road distance)
• Theorem: If h(n) is admissible, A* using
TREE-SEARCH is optimal

Optimality of A* (proof)

Suppose some suboptimal goal G2 has been generated and is
in the fringe. Let n be an unexpanded node in the fringe such
that n is on a shortest path to an optimal goal G.

f(G2) = g(G2) since h(G2) = 0

g(G2) > g(G) since G2 is suboptimal

f(G) = g(G) since h(G) = 0
f(G2) > f(G) from above

Consistent heuristics
A heuristic is consistent if for every node n, every successor n'
of n generated by any action a,

h(n) ≤ c(n,a,n') + h(n')

If h is consistent, we have
f(n') = g(n') + h(n')
 = g(n) + c(n,a,n') + h(n')
 ≥ g(n) + h(n)
 = f(n)
i.e., f(n) is non-decreasing along any path.
• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is

optimal

Optimality of A*

A* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes
Contour i has all nodes with f=fi, where fi < fi+1

Properties of A*

• Complete? Yes (unless there are
infinitely many nodes with f ≤ f(G))

• Time? Exponential
• Space? Keeps all nodes in memory
• Optimal? Yes

Admissible heuristics
E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles

h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ?

• h2(S) = ?

•

Admissible heuristics
E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles

h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

2013 CS 325 - Ch3 Search 85

Repeated states

 Failure to detect repeated states can
turn a linear problem into an
exponential one!

2013 CS 325 - Ch3 Search 86

Graph search

2013 CS 325 - Ch3 Search 87

Summary

 Problem formulation usually requires abstracting
away real-world details to define a state space that
can feasibly be explored

 Variety of uninformed search strategies

 Iterative deepening search uses only linear space
and not much more time than other uninformed
algorithms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Best-first search
	Romania with step costs in km
	Greedy best-first search
	Greedy best-first search example
	Slide 46
	Slide 47
	Slide 48
	Properties of greedy best-first search
	A* search
	A* search example
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Admissible heuristics
	Optimality of A* (proof)
	Consistent heuristics
	Optimality of A*
	Properties of A*
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

