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Problem-solving agents

]

function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action
static: seg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state +— UPDATE-STATE( state, percept)

if seq is empty then do
goal < FORMULATE-GOAL(state)
problem <~ FORMULATE-PROBLEM(state, goal)
seq < SEARCH( problem)

action <+ FIRST(seq)

seq < REST(seq)

return action
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W Example: Romania

On holiday in Romania; currently in Arad.

Flight leaves tomorrow from Bucharest
Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:

sequence of cities, e.qg., Arad, Sibiu, Fagaras,
Bucharest
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W Example: Romania

=] Cradea
MNeamt
- a7
T4
=] lasi
AradlT
T . g2
Sibiu gq Fagams
115 u Vaslui
a0 MVaslui
o Rimnicu Vilcea
T|m|5u:-ara -
142
TN 1T
L1l - Lugu:-j Pitesti
70 = a8 .
_ a5 . Hirsowa
M ehadia 101 . Urziceni
b1 25
. & 130 138 Huchamst
Cobreta -
o - L | a0
Craiova Eforie
-] Giurgiu
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B Romania: problem type?
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W Romania: Problem type

Deterministic, fully observable - single-state
problem

Agent knows exactly which state it will be in; solution is a
sequence

*= Non-observable - sensorless problem (conformant
problem)
Agent may have no idea where it is; solution is a sequence

= Nondeterministic and/or partially observable -
contingency problem
percepts provide new information about current state
often interleave} search, execution

= Unknown state space - exploration problem
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0 Single-state problem
® formulation

A problem is defined by four items:

Initial state e.q., "at Arad"

actions or successor function S(x) = set of action-state pairs
e.qg., S(Arad) = {<Arad 2 Zerind, Zerind>, ... }

goal test, can be
explicit, e.g., x = "at Bucharest"
implicit, e.g., Checkmate(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be = 0

A solution is a sequence of actions leading from the initial
state to a goal state
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W Tree search algorithms

Basic idea:

offline, simulated exploration of state space by
generating successors of already-explored states
(a.k.a. expanding states)

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

2013 CS 325 - Ch3 Search 10



@ Tree search example
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W Tree search example
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W Tree search example
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Implementation: general tree
search

2013

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node <+ REMOVE-FRONT( fringe)
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
fringe < INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND( node, problem) returns a set of nodes

successors <— the empty set

for each action, result in SUCCESSOR-F'N[problem|(STATE[node]) do
s <—a new NODE
PARENT-NODE[s] < node; ACTION[s] < action; STATE[s|  result
PATH-COST[s] «— PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] «— DEPTH[node] + 1
add s to successors

return successors
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Uninformed search
ol strategies

Jninformed search strategies use only
the information available in the
problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search
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W Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors

go at end
>@
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W Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, I.e., new
successors go at end
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W Breadth-first search

Expand shallowest unexpanded node

Implementation:
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W Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors
go at end
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M Example: Romania (Q)
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W Search strategies

A search strategy is defined by picking the order of
node expansion

Strategies are evaluated along the following
dimensions:
completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms
of

b: maximum branching factor of the search tree
d: depth of the least-cost solution
m: maximum depth of the state space (may be x)
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0 Properties of breadth-first
- search

Complete? Yes (if b is finite)
Time? 1+b+b?+b3+...+b + b(b?-1) = O(bd+1)

Space? O(b9*1) (keeps every node in
memory)

Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than
time)
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W Uniform-cost search
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W Uniform-cost search

Expand least-cost unexpanded node
Implementation:

fringe = queue ordered by path cost
Equivalent to breadth-first if step costs all equal
Complete? Yes, if step cost = €

Time? # of nodes with g = cost of optimal solution,
O(bceling€78)) where C* Is the cost of the optimal
solution

Space? # of nodes with g = cost of optimal solution,
O ( bcei/ing(C*/ e))

Optimal? Yes - nodes expanded in increasing order
of g(n)
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W Comparison of Searches

So far:

* Breadth-first search

* Uniform-cost (cheapest) search
* New: Depth-first search
Optimal?

2013 CS 325 - Ch3 Search 25



W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2©.
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W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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W Depth-first search

Expand deepest unexpanded node

Implementation:
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W Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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W Why depth-first?
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0 Properties of depth-first
- search

Complete? No: fails in infinite-depth spaces,
spaces with loops

Modify to avoid repeated states along path
- complete in finite spaces

Time? O(b™): terrible if m >> d

but if solutions are dense, may be much faster
than breadth-first

Space? O(bm), i.e., linear space!
Optimal? No
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W Summary of algorithms

Criterion Breadth-  Uniform- Depth-  Depth- lterative
First Cost First Limited  Deepening
Complete? Yes Yes No No Yes
Time oY) o€y owm) O(b) O(b?)
Space OB+t oI /)y  O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes
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w Limitations
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@est-first search

ldea: use an evaluation function f(n) for each node

estimate of "desirability"
< Expand most desirable unexpanded node

Implementation:

Order the nodes in fringe in decreasing order of
desirability

Special cases:
greedy best-first search
A" search



Romania with step costs In km

Straight—line distance

i Bucharest
Arad W6
Bucharest 0
75 Crawva L&0
Dobreta 147
Arad [ Eforie 1a1
IFagaras 176
118 Giurgiu T
80 [] Vaslui Hir.sm'a 151
Ias 2256
Rimnieu Vikea Lugoj 244
Mehadia 141
Meamt 134
Oradea 180
Pitesti L0
o Hirscva Rimnku Vikea g3
Sibiu 153
Timisoara 329
Urzkceni B0
Eforie  Yashui 196

Zerind 174



@reedy best-first search

Evaluation function f(n) = h(n)
(heuristic)

= estimate of cost from n to goal
e.g., h,,,(n) = straight-line distance
from n to Bucharest

Greedy best-first search expands the
node that appears to be closest to goal
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reedy best-first search
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\ﬂroperties of greedy best-

» Complete? No - can get stuck in
loops, e.qg., lasi > Neamt = lasi 2
Neamt -

 Time? O(b™), but a good heuristic can
give dramatic improvement

* Space? O(b™) -- keeps all nodes In
memory

 Optimal? No




W* search

ldea: avoid expanding paths that are
already expensive

Evaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path
through n to goal
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@ State Spaces




W Example: vacuum world

Single-state, start in #5.

. 1 | =) 2
Solution? R | opm o3
3 |.=d) 4
R oFR
5 | =) 6
oH
7 | =) 8

A [BR[L A [#A
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W Example: vacuum world

Single-state, start in #5.

. . 1 E
Solution? [Right, Suck] = - |8
Sensorless, start in 3 | =) 4 =
{1,2,3,4,5,6,7,8} e.q., e e
Right goes to {2,4,6,8} ¢ 4 5 4
Solution? Fh off

7 | =) 8 =)
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W Example: vacuum world

Sensorless, start in 1 | =) 2
{1,2,3,4,5,6,7,8} e.q., e | wR i
Right goes to {2,4,6,8}

Solution? : f ) 38
[Right,Suck,Left,Suck]
5 | =) 6
oA

Contingency

Nondeterministic: Suck may 7 |« 8
dirty a clean carpet

A [#R) | A 2L

Partially observable: location, dirt at current location.

Percept: [L, Clean], i.e., start in #5 or #7
Solution?
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W Example: vacuum world

Sensorless, start in 1 | =) 2
{1,2,3,4,5,6,7,8} e.q., e | o
Right goes to {2,4,6,8} 3 [ 2
Solution? R oFR
[Right,Suck,Left,Suck]

5 | A - 6

Contingency

Nondeterministic: Suck may 7 =] 8
dirty a clean carpet

A [#A) | A 2K

Partially observable: location, dirt at current location.

Percept: [L, Clean], i.e., start in #5 or #7
Solution? [Right, if dirt then Suck]
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B Selecting a state space

Real world is absurdly complex
- state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real
actions

e.g., "Arad = Zerind" represents a complex set of possible
routes, detours, rest stops, etc.

For guaranteed realizability, any real state "in Arad
must get to some real state "in Zerind"

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be "easier" than the
original problem

']
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Vacuum world state space

W graph

) i =4[ \n
C uMIN 9
= states. : :
= actions?
= goal test?
= path cost?
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Vacuum world state space

(el e

/15
=

e [T O (&L T [0
- : : -

L =) - A =

C AL 9

states? integer dirt and robot location

actions? Left, Right, Suck

goal test? no dirt at all locations

path cost? 1 per action
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MW Modified vacuum world?
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@ Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8
= states?
= actions?

= goal test?
= path cost?
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W Example: The 8-puzzle

7 2 4 1 2
S 6 3 4 S
8 3 1 6 7 8

Start State Goal State

states? locations of tiles

actions? move blank left, right, up, down
goal test? = goal state (given)

path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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B Example: robotic assembly

oyl %

states?: real-valued coordinates of robot joint
angles parts of the object to be assembled

actions?: continuous motions of robot joints
goal test?: complete assembly
path cost?: time to execute
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uulmplementation: states vs. nodes

A state is a (representation of) a physical

configuration

A node is a data structure constituting part of a
search tree includes state, parent node, action, path

cost g(x), depth

State || 5 4

6 1

7 3

parent, action
A

depth = 6
g=6

The Expand function creates new nodes, filling in the
various fields and using the SuccessorFn of the
problem to create the corresponding states.

2013 CS 325 - Ch3 Search
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Depth-limited search

3

= depth-first search with depth limit /,
l.e., nodes at depth / have no successors

= Recursive implementation:

2013

function DEPTH-LIMITED-SEARCH( problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE- DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? + false
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
else if DEPTH[node| = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result +— RECURSIVE- DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # faiure then return result
if cutoff-occurred? then return cutoff else return failure
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W Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth<+ 0 to oo do
result < DEPTH-LIMITED-SEARCH( problem, depth)
if result # cutoff then return result
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Iterative deepening search
_

Limit =0 +(2) [ ]
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Iterative deepening search

_ -
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Iterative deepening search

_ S

S S T S

2013 CS 325 - Ch3 Search 74



0 lterative deepening search
\ [ =3

Limit =3 10

i

o
- ni
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B Iterative deepening search

Number of nodes generated in a depth-limited search
to depth d with branching factor b:

No,s = b+ bl + b2 + ... + bd2 + bé1 + pe

Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

N = (d+1)b° + d b! + (d-1)b? + ... + 3b%2 +2bd1 + 1bd

Forb=10,d =5,
N,.=1+ 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
N, =6+ 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 -111,111)/111,111 = 11%
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Properties of iterative
ol deepening search

Complete? Yes

Time? (d+1)b° + d b + (d-1)b? + ...

b = O(b9)
Space? O(bd)
Optimal? Yes, if step cost =1
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deissible heuristics

A heuristic h(n) is admissible if for every
node n,

h(n) < h*(n), where h*(n) is the true cost to
reach the goal state from n.

An admissible heuristic never overestimates

the cost to reach the goal, i.e., it is

optimistic

Example: h,,,(n) (never overestimates the

actual road distance)

* Theorem: If h(n) is admissible, A* using
TREE - SEARCH Is optimal



Wptimality of A* (proof)

Suppose some suboptimal goal G, has been generated and is

in the fringe. Let n be an unexpanded node in the fringe such
that n is on a shortest path to an optimal goal G.

Sreart

N

]
QO &,

f(G,) = 9(G,) since h(G,) =0

a9(G,) > g(G) since G, is suboptimal
f(G) = g(G) since h(G) =0

f(G,) > f(G) from above



$onsistent heuristics

A heuristic is consistent if for every node n, every successor n'
of n generated by any action a,

h(n) < c(n,a,n') + h(n')

c(n,a,n’)
If h is consistent, we have
f(n') = g(n') + h(n')
= g(n) + c(n,a,n’) + h(n')
= g(n) + h(n)
= f(n)

l.e., f(n) is non-decreasing along any path.

* Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is
optimal



®ptimality of A*

A" expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes
Contour i has all nodes with f=f, where f, < f_,




Broperties of A$"~*$

» Complete? Yes (unless there are
infinitely many nodes with f = f(G) )

 Time? Exponential
* Space? Keeps all nodes in memory
* Optimal? Yes




@dmissible heuristics

E.g., for the 8-puzzle:

h,(n) = number of misplaced tiles
h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

1

4

7 2 4
S 6
8 3 1

7

Start State

Goal State




deissible heuristics

E.g., for the 8-puzzle:
h,(n) = number of misplaced tiles

h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1

5 6 3 4

8 3 1 6 7
Start State Goal State

- h,(5) =78
e h(S) =7 3+1+4+2+2+2+3+3+2 =18




W Repeated states

Failure to detect repeated states can
turn a linear problem into an
exponential one!
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Graph search

function GRAPH-SEARCH( problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node +— REMOVE- FRONT( fringe)
if GoAL-TEsT[problem|(STATE[node]) then return SOLUTION(node)
if STATE[node| is not in closed then
add STATE[node] to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)

2013
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W Summary

Problem formulation usually requires abstracting
away real-world details to define a state space that
can feasibly be explored

Variety of uninformed search strategies
Iterative deepening search uses only linear space

and not much more time than other uninformed
algorithms
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