
Solving problems by 
searching

Chapter 3

Some slide credits to Hwee Tou Ng (Singapore)
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Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Example problems
 Basic search algorithms
 Heuristics
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Intelligent agent solves 
problems by?
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Problem-solving agents
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Example: Romania

 On holiday in Romania; currently in Arad.
 Flight leaves tomorrow from Bucharest
 Formulate goal:

 be in Bucharest
 Formulate problem:

 states: various cities
 actions: drive between cities

 Find solution:
 sequence of cities, e.g., Arad, Sibiu, Fagaras, 

Bucharest
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Example: Romania
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Romania: problem type?
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Romania: Problem type

 Deterministic, fully observable  single-state 
problem

 Agent knows exactly which state it will be in; solution is a 
sequence

 Non-observable  sensorless problem (conformant 
problem)

 Agent may have no idea where it is; solution is a sequence
 Nondeterministic and/or partially observable  

contingency problem
 percepts provide new information about current state
 often interleave} search, execution

 Unknown state space  exploration problem
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Single-state problem 
formulation

A problem is defined by four items:

1. initial state e.g., "at Arad"
2. actions or successor function S(x) = set of action–state pairs 

 e.g., S(Arad) = {<Arad  Zerind, Zerind>, … }
1. goal test, can be

 explicit, e.g., x = "at Bucharest"
 implicit, e.g., Checkmate(x)

1. path cost (additive)
 e.g., sum of distances, number of actions executed, etc.
 c(x,a,y) is the step cost, assumed to be ≥ 0

 A solution is a sequence of actions leading from the initial 
state to a goal state
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Tree search algorithms

 Basic idea:
 offline, simulated exploration of state space by 

generating successors of already-explored states 
(a.k.a. expanding states)
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Tree search example



2013 CS 325 - Ch3 Search 12

Tree search example
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Tree search example
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Implementation: general tree 
search
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Uninformed search 
strategies

 Uninformed search strategies use only 
the information available in the 
problem definition

 Breadth-first search
 Uniform-cost search
 Depth-first search
 Depth-limited search
 Iterative deepening search
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Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors 
go at end
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Breadth-first search

 Expand shallowest unexpanded node
 Implementation:
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go at end
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Example: Romania (Q)
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Search strategies

 A search strategy is defined by picking the order of 
node expansion

 Strategies are evaluated along the following 
dimensions:

 completeness: does it always find a solution if one exists?
 time complexity: number of nodes generated
 space complexity: maximum number of nodes in memory
 optimality: does it always find a least-cost solution?

 Time and space complexity are measured in terms 
of 

 b: maximum branching factor of the search tree
 d: depth of the least-cost solution
 m: maximum depth of the state space (may be ∞)
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Properties of breadth-first 
search

 Complete? Yes (if b is finite)
 Time? 1+b+b2+b3+…+bd + b(bd-1) = O(bd+1)
 Space? O(bd+1) (keeps every node in 

memory)
 Optimal? Yes (if cost = 1 per step)

 Space is the bigger problem (more than 
time)
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Uniform-cost search

Video

http://www.udacity.com/view#Course/cs271/CourseRev/1/Unit/40001/Nugget/69001
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Uniform-cost search

 Expand least-cost unexpanded node
 Implementation:

 fringe = queue ordered by path cost
 Equivalent to breadth-first if step costs all equal
 Complete? Yes, if step cost ≥ ε
 Time? # of nodes with g ≤ cost of optimal solution, 

O(bceiling(C*/ ε)) where C* is the cost of the optimal 
solution

 Space? # of nodes with g ≤ cost of optimal solution, 
O(bceiling(C*/ ε))

 Optimal? Yes – nodes expanded in increasing order 
of g(n)
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Comparison of Searches

So far:
 Breadth-first search
 Uniform-cost (cheapest) search
 New: Depth-first search
Optimal?
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Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front
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Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front
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Why depth-first?
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Properties of depth-first 
search

 Complete? No: fails in infinite-depth spaces, 
spaces with loops
 Modify to avoid repeated states along path

 complete in finite spaces

 Time? O(bm): terrible if m >> d
  but if solutions are dense, may be much faster 

than breadth-first
 Space? O(bm), i.e., linear space!
 Optimal? No
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Summary of algorithms
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Limitations

Video

http://www.udacity.com/view#Course/cs271/CourseRev/1/Unit/40001/Nugget/83001


  

Best-first search

Idea: use an evaluation function f(n) for each node
estimate of "desirability"

Expand most desirable unexpanded node

Implementation:
Order the nodes in fringe in decreasing order of 
desirability

Special cases:
greedy best-first search
A* search

–



  

Romania with step costs in km



  

Greedy best-first search

Evaluation function f(n) = h(n) 
(heuristic)
= estimate of cost from n to goal
e.g., hSLD(n) = straight-line distance 
from n to Bucharest
Greedy best-first search expands the 
node that appears to be closest to goal



  

Greedy best-first search 
example



  

Greedy best-first search 
example



  

Greedy best-first search 
example



  

Greedy best-first search 
example



  

Properties of greedy best-
first search
• Complete? No – can get stuck in 

loops, e.g., Iasi  Neamt  Iasi  
Neamt  

• Time? O(bm), but a good heuristic can 
give dramatic improvement

• Space? O(bm) -- keeps all nodes in 
memory

• Optimal? No



  

A* search

Idea: avoid expanding paths that are 
already expensive
Evaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal
f(n) = estimated total cost of path 
through n to goal



  

A* search example



  

A* search example



  

A* search example



  

A* search example



  

A* search example



  

A* search example



  

State Spaces
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Example: vacuum world

 Single-state, start in #5. 
Solution?
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Example: vacuum world

 Single-state, start in #5. 
Solution? [Right, Suck]

 Sensorless, start in 
{1,2,3,4,5,6,7,8} e.g., 
Right goes to {2,4,6,8} 
Solution?
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Example: vacuum world

 Sensorless, start in 
{1,2,3,4,5,6,7,8} e.g., 
Right goes to {2,4,6,8} 
Solution? 
[Right,Suck,Left,Suck]

 Contingency 
 Nondeterministic: Suck may 

dirty a clean carpet
 Partially observable: location, dirt at current location.
 Percept: [L, Clean], i.e., start in #5 or #7

Solution?
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Example: vacuum world

 Sensorless, start in 
{1,2,3,4,5,6,7,8} e.g., 
Right goes to {2,4,6,8} 
Solution? 
[Right,Suck,Left,Suck]

 Contingency 
 Nondeterministic: Suck may 

dirty a clean carpet
 Partially observable: location, dirt at current location.
 Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]
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Selecting a state space

 Real world is absurdly complex 
 state space must be abstracted for problem solving

 (Abstract) state = set of real states
 (Abstract) action = complex combination of real 

actions
 e.g., "Arad  Zerind" represents a complex set of possible 

routes, detours, rest stops, etc. 
 For guaranteed realizability, any real state "in Arad“ 

must get to some real state "in Zerind"
 (Abstract) solution = 

 set of real paths that are solutions in the real world
 Each abstract action should be "easier" than the 

original problem
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Vacuum world state space 
graph

 states?
 actions?
 goal test?
 path cost?
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Vacuum world state space 
graph

 states? integer dirt and robot location 
 actions? Left, Right, Suck
 goal test? no dirt at all locations
 path cost? 1 per action
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Modified vacuum world?
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Example: The 8-puzzle

 states?
 actions?
 goal test?
 path cost?
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Example: The 8-puzzle

 states? locations of tiles 
 actions? move blank left, right, up, down 
 goal test? = goal state (given)
 path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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Example: robotic assembly

 states?: real-valued coordinates of robot joint 
angles parts of the object to be assembled

 actions?: continuous motions of robot joints
 goal test?: complete assembly
 path cost?: time to execute
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Implementation: states vs. nodes

 A state is a (representation of) a physical 
configuration

 A node is a data structure constituting part of a 
search tree includes state, parent node, action, path 
cost g(x), depth

 The Expand function creates new nodes, filling in the 
various fields and using the SuccessorFn of the 
problem to create the corresponding states.
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Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

 Recursive implementation:
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Iterative deepening search
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Iterative deepening search 
l =0
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Iterative deepening search 
l =1
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Iterative deepening search 
l =2
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Iterative deepening search 
l =3
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Iterative deepening search

 Number of nodes generated in a depth-limited search 
to depth d with branching factor b: 

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd 

 Number of nodes generated in an iterative deepening 
search to depth d with branching factor b: 

NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd 

 For b = 10, d = 5,
 NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
 NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

 Overhead = (123,456 - 111,111)/111,111 = 11%
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Properties of iterative 
deepening search

 Complete? Yes
 Time? (d+1)b0 + d b1 + (d-1)b2 + … + 

bd = O(bd)
 Space? O(bd)
 Optimal? Yes, if step cost = 1



  

Admissible heuristics

A heuristic h(n) is admissible if for every 
node n,

h(n) ≤ h*(n), where h*(n) is the true cost to 
reach the goal state from n.

An admissible heuristic never overestimates 
the cost to reach the goal, i.e., it is 
optimistic
Example: hSLD(n) (never overestimates the 
actual road distance)
• Theorem: If h(n) is admissible, A* using 
TREE-SEARCH is optimal



  

Optimality of A* (proof)

Suppose some suboptimal goal G2 has been generated and is 
in the fringe. Let n be an unexpanded node in the fringe such 
that n is on a shortest path to an optimal goal G.

f(G2)  = g(G2) since h(G2) = 0 

g(G2) > g(G) since G2 is suboptimal 

f(G)   = g(G) since h(G) = 0 
f(G2)  > f(G) from above 



  

Consistent heuristics
A heuristic is consistent if for every node n, every successor n' 
of n generated by any action a, 

h(n) ≤ c(n,a,n') + h(n')

If h is consistent, we have
f(n') = g(n') + h(n') 
      = g(n) + c(n,a,n') + h(n') 
      ≥ g(n) + h(n) 
      = f(n)
i.e., f(n) is non-decreasing along any path.
• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is 

optimal

  



  

Optimality of A*

A* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes 
Contour i has all nodes with f=fi, where fi < fi+1



  

Properties of A$^*$

• Complete? Yes (unless there are 
infinitely many nodes with f ≤ f(G) )

• Time? Exponential
• Space? Keeps all nodes in memory
• Optimal? Yes



  

Admissible heuristics
E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles

h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 

• h2(S) = ? 

•



  

Admissible heuristics
E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles

h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18 



2013 CS 325 - Ch3 Search 85

Repeated states

 Failure to detect repeated states can 
turn a linear problem into an 
exponential one!
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Graph search
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Summary

 Problem formulation usually requires abstracting 
away real-world details to define a state space that 
can feasibly be explored

 Variety of uninformed search strategies

 Iterative deepening search uses only linear space 
and not much more time than other uninformed 
algorithms
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