CS325 Artificial Intelligence Ch. 7, 8, 9 – Logic, Knowledge, and Inference

Cengiz Günay, Ph.D.

Spring 2013

Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

We did so far:

- Intelligent agents
- Problem Solving
- Probability
- Machine Learning

We did so far:

- Intelligent agents
- Problem Solving
- Probability
- Machine Learning

Did we forget "thinking rationally?"

We did so far:

- Intelligent agents
- Problem Solving
- Probability
- Machine Learning

Did we forget "thinking rationally?" An agent needs logic for:

We did so far:

- Intelligent agents
- Problem Solving
- Probability
- Machine Learning

Did we forget "thinking rationally?" An agent needs logic for:

- To represent a model of the world
- And to reason about it

Exit survey: Unsupervised Learning

- What changed in your understanding?
- Any new suggestions on where would you use it?

Entry survey: Logic (0.25 points of final grade)

- What language would you use to represent logic?
- How would you make an agent reason?

It's been a while since Aristotle, do we still need formal logic?

i Think Therefore I am.

It's been a while since Aristotle, do we still need formal logic?

i Think Therefore I am.

• Our society is based on logic: we take it for granted.

Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

It's been a while since Aristotle, do we still need formal logic?

i Think Therefore I am.

• Our society is based on logic: we take it for granted.

In this class, we'll learn the tools of logic for **representation** and **inference**:

- Propositional logic
- First-order logic

Remember?

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э

Remember?

• $(E \lor B) \Rightarrow A$, Correct?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Remember?

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э

- $(E \lor B) \Rightarrow A$, Correct?
- $A \Rightarrow (J \land M)$?

Propositional Logic Operators Cheat Sheet

- \land And
- V Or
- \neg Negation
- () Grouping
- \Rightarrow Implies
- \Leftrightarrow Equivalence

Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

•
$$(E \lor B) \Rightarrow A$$
, Correct?

•
$$A \Rightarrow (J \land M)$$
?

Propositional Logic Operators Cheat Sheet

- \land And
- V Or
- \neg Negation
- () Grouping
- \Rightarrow Implies
- \Leftrightarrow Equivalence

Model of the world represented as: $\{B : \text{True}, E : \text{False}, \ldots\}$

Can You Handle the Truth Tables?

Р	Q	¬Ρ	ΡΛQ	ΡvQ	P⇒Q	P⇔Q
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

→ 《三→ 《

æ

Р	Q	¬Ρ	ΡΛQ	ΡvQ	P⇒Q	P⇔Q
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

• Mostly consistent with English meanings, except?

Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

Р	Q	¬Ρ	ΡΛQ	ΡvQ	P⇒Q	P⇔Q
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Mostly consistent with English meanings, except?
- OR operation (\vee) is inclusive

Р	Q	¬Ρ	ΡΛQ	ΡvQ	P⇒Q	P⇔Q
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Mostly consistent with English meanings, except?
- OR operation (V) is inclusive
- Except \Rightarrow and \Leftrightarrow , so consult the truth table.

Р	Q	¬Ρ	ΡΛQ	ΡvQ	P⇒Q	P⇔Q
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Mostly consistent with English meanings, except?
- OR operation (V) is inclusive
- Except \Rightarrow and \Leftrightarrow , so consult the truth table.

Question: *E*: 5 is even, *S*: the earth goes around the sun

• $E \Rightarrow S$: True or False?

Р	Q	¬Ρ	ΡΛQ	ΡvQ	P⇒Q	P⇔Q
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Mostly consistent with English meanings, except?
- OR operation (V) is inclusive
- Except \Rightarrow and \Leftrightarrow , so consult the truth table.

Question: E: 5 is even, S: the earth goes around the sun

- $E \Rightarrow S$: True or False?
- $\neg E \Rightarrow \neg S$: True or False?

Let's Put Truth Tables to Use

Р	Q	$ P \land (P \Rightarrow Q)$	$\neg(\neg P \lor \neg Q)$	$ P \land (P \Rightarrow Q) \Leftrightarrow \neg (\neg P \lor \neg Q)$
False	False			
False	True			
True	False			
True	True			

Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

→ 《三→ 《

æ

Let's Put Truth Tables to Use

Р	Q	$P \land (P \Rightarrow Q)$	$\neg(\neg P \lor \neg Q)$	$P \land (P \Rightarrow Q) \Leftrightarrow \neg (\neg P \lor \neg Q)$
False	False			Yes
False	True			Yes
True	False			Yes
True	True	Yes	Yes	Yes

Trick:

$$\neg(\neg P \lor \neg Q) \Rightarrow P \land Q$$

Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

æ

▶ ▲ 콜 ▶ ▲

3

What we know to be True:

What we know to be True:

•
$$(E \lor B) \Rightarrow A$$

• $A \Rightarrow (J \land M)$
• B

Can we infer?								
т	F	?						
			E B A J M					

- < ≣ >

Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

What we know to be True:

•
$$(E \lor B) \Rightarrow A$$

• $A \Rightarrow (J \land M)$
• B

Can we infer?								
Т	F	?						
		Х	Ε					
Х			В					
Х			A					
Х			J					
Х			Μ					

- < ≣ >

Valid: <u>Always</u> true. Satisfiable: Possible to be true. Unsatisfiable: Impossible to be true.

Valid: <u>Always</u> true. Satisfiable: Possible to be true. Unsatisfiable: Impossible to be true.

Valid: <u>Always</u> true. Satisfiable: Possible to be true. Unsatisfiable: Impossible to be true.

Р	Q	¬Ρ	ΡΛQ	ΡvQ	P⇒Q	P⇔Q
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Only true and false propositions, no objects. Therefore no relations between objects
- O No uncertainty (except totally unknown entities)
- Solution No general statements like ALL or ANY Cumbersome for large domains.

Р	Q	¬Ρ	ΡΛQ	ΡvQ	P⇒Q	P⇔Q
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Only true and false propositions, no objects. Therefore no relations between objects
- O No uncertainty (except totally unknown entities)
- No general statements like ALL or ANY Cumbersome for large domains.

Next: First Order Logic (FOL), fixes 1 & 3

Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

白 ト イヨト イヨト

Atomic: facts

- Atomic: facts
- Factored: facts divided into parts (used both in prop. logic and probability)

- Atomic: facts
- Factored: facts divided into parts (used both in prop. logic and probability)
- Structured: facts, objects and relations (only in FOL)

- Atomic: facts
- Factored: facts divided into parts (used both in prop. logic and probability)
- Structured: facts, objects and relations (only in FOL)

FOL World Model

What was the model in propositional logic?

э

< 문 ► < 문

FOL World Model

What was the model in propositional logic? $\{P : \text{True}, Q : \text{False}, \ldots\}$

▶ ★ 문 ▶ ★ 문 ▶

3

FOL World Model

What was the model in propositional logic? $\{P : \text{True}, Q : \text{False}, \ldots\}$

Let's represent these objects in First Order Logic:

Constants: {A, B, C, D, 1, 2, 3} Relations: above: { $[A, B], [C, D], \ldots$ }, vowel: {[A]} rainy: {} Functions: numberof: { $A \rightarrow 1, B \rightarrow 3, \ldots$ }

Sentences vowel(A)above(A,B)2 = 2

Terms constants: A, B, 2 variables: x, y func: numberof(A)

Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

Sentences vowel(A) above(A,B) 2 = 2 Terms constants: A, B, 2 variables: x, y func: numberof(A)

Operators: $\lor \land \neg \Rightarrow \Leftrightarrow ()$

Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

Operators:
$$\lor \land \neg \Rightarrow \Leftrightarrow$$
 ()
Quantifiers: $\forall x \exists y$
 $\forall x \text{ vowel}(A) \Rightarrow \text{numberof}(x) = 1$
 $\exists x \text{ numberof}(x) = 2$

Note: Default is \forall .

Constants: A, B, V, D1, D2Relations: Loc, Vacuum, Dirt, At(o, I)

Constants: A, B, V, D1, D2Relations: Loc, Vacuum, Dirt, At(o, l)

Say:

• Vacuum is at location A:

Constants: A, B, V, D1, D2Relations: Loc, Vacuum, Dirt, At(o, I)

Say:

• Vacuum is at location A: At(V, A)

Constants: A, B, V, D1, D2 Relations: Loc, Vacuum, Dirt, At(o, I)

Say:

• Vacuum is at location A: At(V, A)

World is clean:

Constants: A, B, V, D1, D2 Relations: Loc, Vacuum, Dirt, At(o, l)

Say:

- Vacuum is at location A: At(V, A)
- ② World is clean: $\forall d \forall l \operatorname{Dirt}(d) \land \operatorname{Loc}(l) \Rightarrow \neg \operatorname{At}(d, l)$
- Vaccum is at dirty location

Constants: A, B, V, D1, D2Relations: Loc, Vacuum, Dirt, At(o, I)

Say:

- Vacuum is at location A: At(V, A)
- ② World is clean: $\forall d \forall l \operatorname{Dirt}(d) \land \operatorname{Loc}(l) \Rightarrow \neg \operatorname{At}(d, l)$
- Solution ∃d∃/Dirt(d) ∧ Loc(l) ∧ At(d, l) ∧ At(V, l)

$$V \leq U$$

$$\exists x, y = y$$

$$(\exists x = x) \Rightarrow (\forall y = z = y = z)$$

$$\forall x = P(x) = V = P(x)$$

$$\exists x = P(x)$$

Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

◆□ > ◆□ > ◆豆 > ◆豆 >

æ

V	5	\cup	
٩	0	0	$\exists x, y x = y$
9	Ó	0	$(\exists x \ x=x) \Rightarrow (\forall y \exists z \ y=z)$
٩	90	Ô	$\forall x \ \varphi(x) \ \forall \neg \varphi(x)$
6	₽⊙	6	$\exists x r(x)$

Günay Ch. 7, 8, 9 – Logic, Knowledge, and Inference

・ロト ・部ト ・ヨト ・ヨト

æ

Exit survey: Logic

- Where would you use propositional vs. FOL?
- What is the importance of logic representation over what we saw earlier?

