CS325 Artificial Intelligence Ch. 7, 8, 9 - Logic, Knowledge, and Inference

Cengiz Günay, Ph.D.

Spring 2013

Is Logic Overrated?

We did so far:

- Intelligent agents
- Problem Solving
- Probability
- Machine Learning

Is Logic Overrated?

We did so far:

- Intelligent agents
- Problem Solving
- Probability
- Machine Learning

Did we forget "thinking rationally?"

Is Logic Overrated?

We did so far:

- Intelligent agents
- Problem Solving
- Probability
- Machine Learning

Did we forget "thinking rationally?"
An agent needs logic for:

Is Logic Overrated?

We did so far:

- Intelligent agents
- Problem Solving
- Probability
- Machine Learning

Did we forget "thinking rationally?"
An agent needs logic for:

- To represent a model of the world
- And to reason about it

Entry/Exit Surveys

Exit survey: Unsupervised Learning

- What changed in your understanding?
- Any new suggestions on where would you use it?

Entry survey: Logic (0.25 points of final grade)

- What language would you use to represent logic?
- How would you make an agent reason?

Tools of Logic

It's been a while since Aristotle, do we still need formal logic?
i Think
Therefore I am.

Tools of Logic

It's been a while since Aristotle, do we still need formal logic?

- Our society is based on logic: we take it for granted.

Tools of Logic

It's been a while since Aristotle, do we still need formal logic?

- Our society is based on logic: we take it for granted.

In this class, we'll learn the tools of logic for representation and inference:

- Propositional logic
- First-order logic

The Simplest: Propositional Logic
Remember?

The Simplest: Propositional Logic
Remember?

- $(E \vee B) \Rightarrow A$, Correct?

The Simplest: Propositional Logic
Remember?

- $(E \vee B) \Rightarrow A$, Correct?
- $A \Rightarrow(J \wedge M)$?

The Simplest: Propositional Logic

- $(E \vee B) \Rightarrow A$, Correct?
- $A \Rightarrow(J \wedge M)$?

Propositional Logic Operators Cheat Sheet

\wedge And
\checkmark Or
\neg Negation
() Grouping
\Rightarrow Implies
\Leftrightarrow Equivalence

The Simplest: Propositional Logic

- $(E \vee B) \Rightarrow A$, Correct?
- $A \Rightarrow(J \wedge M)$?

Propositional Logic Operators Cheat Sheet

\wedge And
\checkmark Or
\neg Negation
() Grouping
\Rightarrow Implies
\Leftrightarrow Equivalence
Model of the world represented as: $\{B:$ True, $E:$ False, $\ldots\}$

Can You Handle the Truth Tables?

P	Q	-P	$\mathrm{P} \wedge \mathrm{Q}$	$\mathrm{P} \vee \mathrm{Q}$	$\mathrm{P} \Rightarrow \mathrm{Q}$	$\mathrm{P} \Leftrightarrow \mathrm{Q}$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Can You Handle the Truth Tables?

P	Q	$\rightarrow \mathrm{P}$	$\mathrm{P} \wedge \mathrm{Q}$	$\mathrm{P} \vee \mathrm{Q}$	$\mathrm{P} \Rightarrow \mathrm{Q}$	$\mathrm{P} \Leftrightarrow \mathrm{Q}$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Mostly consistent with English meanings, except?

Can You Handle the Truth Tables?

P	Q	-P	$\mathrm{P} \wedge \mathrm{Q}$	$\mathrm{P} \vee \mathrm{Q}$	$\mathrm{P} \Rightarrow \mathrm{Q}$	$\mathrm{P} \Leftrightarrow \mathrm{Q}$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Mostly consistent with English meanings, except?
- OR operation (V) is inclusive

Can You Handle the Truth Tables?

\mathbf{P}	Q	-P	$\mathrm{P} \wedge \mathrm{Q}$	$\mathrm{P} \vee \mathrm{Q}$	$\mathrm{P} \Rightarrow \mathrm{Q}$	$\mathrm{P} \Leftrightarrow \mathrm{Q}$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Mostly consistent with English meanings, except?
- OR operation (V) is inclusive
- Except \Rightarrow and \Leftrightarrow, so consult the truth table.

Can You Handle the Truth Tables?

\mathbf{P}	\mathbf{Q}	$-\mathbf{P}$	$\mathrm{P} \wedge \mathrm{Q}$	$\mathrm{P} \vee \mathrm{Q}$	$\mathrm{P} \Rightarrow \mathrm{Q}$	$\mathrm{P} \Leftrightarrow \mathrm{Q}$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Mostly consistent with English meanings, except?
- OR operation (V) is inclusive
- Except \Rightarrow and \Leftrightarrow, so consult the truth table.

Question: $E: 5$ is even, S : the earth goes around the sun

- $E \Rightarrow S$: True or False?

Can You Handle the Truth Tables?

\mathbf{P}	\mathbf{Q}	\boldsymbol{P}	$\mathbf{P} \wedge \mathbf{Q}$	$\mathbf{P} \vee \mathbf{Q}$	$\mathbf{P} \Rightarrow \mathbf{Q}$	$\mathrm{P} \Leftrightarrow \mathrm{Q}$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Mostly consistent with English meanings, except?
- OR operation (V) is inclusive
- Except \Rightarrow and \Leftrightarrow, so consult the truth table.

Question: $E: 5$ is even, S : the earth goes around the sun

- $E \Rightarrow S$: True or False?
- $\neg E \Rightarrow \neg S$: True or False?

Let's Put Truth Tables to Use

P	Q	$P \wedge(P \Rightarrow Q)$	$\neg(\neg P \vee \neg Q)$	$P \wedge(P \Rightarrow Q) \Leftrightarrow \neg(\neg P \vee \neg Q)$
False	False			
False	True			
True	False			
True	True			

Let's Put Truth Tables to Use

P	Q	$P \wedge(P \Rightarrow Q)$	$\neg(\neg P \vee \neg Q)$	$P \wedge(P \Rightarrow Q) \Leftrightarrow \neg(\neg P \vee \neg Q)$
False	False			Yes
False	True			Yes
True	False			Yes
True	True	Yes	Yes	Yes

Trick:

$$
\neg(\neg P \vee \neg Q) \Rightarrow P \wedge Q
$$

World Representation

What we know to be True:

- $(E \vee B) \Rightarrow A$
- $A \Rightarrow(J \wedge M)$
- B

World Representation

What we know to be True:

- $(E \vee B) \Rightarrow A$
- $A \Rightarrow(J \wedge M)$
- B

Can we infer?

T	F	$?$	
			E
			B
			A
			J
		M	

World Representation

What we know to be True:

- $(E \vee B) \Rightarrow A$
- $A \Rightarrow(J \wedge M)$
- B

Can we infer?

T	F	$?$	
		X	E
X			B
X			A
X			J
X			M

Validity and Satisfiability

Valid: Always true.
Satisfiable: Possible to be true.
Unsatisfiable: Impossible to be true.

Validity and Satisfiability

Valid: Always true.
Satisfiable: Possible to be true.
Unsatisfiable: Impossible to be true.

V	S	U	
			$\begin{aligned} & P \\ & P \vee \neg P \\ & P \wedge \neg P \\ & P \vee Q \vee(P \Leftrightarrow Q) \\ & (Q \Rightarrow P) \vee(P \Rightarrow Q) \\ & \text { (Food } \Rightarrow \text { Party }) \vee \text { (Drinks } \Rightarrow \text { Party) } \Rightarrow \\ & \quad \text { (Food } \wedge \text { Drinks } \Rightarrow \text { Party) } \end{aligned}$

Validity and Satisfiability

Valid: Always true.
Satisfiable: Possible to be true.
Unsatisfiable: Impossible to be true.

V	S	U	
	X		P
X			$P \vee \neg P$
		X	$P \wedge \neg P$
X			$P \vee Q \vee(P \Leftrightarrow Q)$
X			$(Q \Rightarrow P) \vee(P \Rightarrow Q)$
X			$\begin{aligned} & (\text { Food } \Rightarrow \text { Party }) \vee(\text { Drinks } \Rightarrow \text { Party }) \Rightarrow \\ & (\text { Food } \wedge \text { Drinks } \Rightarrow \text { Party }) \end{aligned}$

Propositional Logic: Limitations?

\mathbf{P}	Q	$\rightarrow \mathbf{P}$	$\mathrm{P} \wedge \mathrm{Q}$	$\mathrm{P} \vee \mathrm{Q}$	$\mathrm{P} \Rightarrow \mathrm{Q}$	$\mathrm{P} \Leftrightarrow \mathrm{Q}$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

(1) Only true and false propositions, no objects. Therefore no relations between objects
(2) No uncertainty (except totally unknown entities)
(3) No general statements like ALL or ANY Cumbersome for large domains.

Propositional Logic: Limitations?

P	Q	-P	$\mathrm{P} \wedge \mathrm{Q}$	$\mathrm{P} \vee \mathrm{Q}$	$\mathrm{P} \Rightarrow \mathrm{Q}$	$\mathrm{P} \Leftrightarrow \mathrm{Q}$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

(1) Only true and false propositions, no objects. Therefore no relations between objects
(2) No uncertainty (except totally unknown entities)
(3) No general statements like ALL or ANY Cumbersome for large domains.

Next: First Order Logic (FOL), fixes $1 \& 3$

First Order Logic

First Order Logic

	WORLD	
FIRST-ORDER LOGIC	Rel, Objects, FUNC	$\frac{\text { BELIEFS }}{T / F / ?}$
PROPOSITIONAL LOGS	Facts	$T / F / ?$
PROBABILITY THEORY	Facts	$[0.1]$

Can also compare in terms of representation type:
(1) Atomic: facts

First Order Logic

Can also compare in terms of representation type:
(1) Atomic: facts
(2) Factored: facts divided into parts (used both in prop. logic and probability)

First Order Logic

Can also compare in terms of representation type:
(1) Atomic: facts
(2) Factored: facts divided into parts (used both in prop. logic and probability)
(3) Structured: facts, objects and relations (only in FOL)

First Order Logic

Can also compare in terms of representation type:
(1) Atomic: facts
(2) Factored: facts divided into parts (used both in prop. logic and probability)
(3) Structured: facts, objects and relations (only in FOL)

FOL World Model

What was the model in propositional logic?

FOL World Model

What was the model in propositional logic?
$\{P$: True, Q : False, $\ldots\}$

What was the model in propositional logic?
$\{P$: True, Q : False, ... $\}$
Let's represent these objects in First Order Logic:

B_{3}

D_{2}

Constants: $\{A, B, C, D, 1,2,3\}$
Relations: above: $\{[A, B],[C, D], \ldots)$, vowel: $\{[A]\}$ rainy: $\}$
Functions: numberof: $\{A \rightarrow 1, B \rightarrow 3, \ldots)$

Sentences
 vowel (A)
 above (A, B)
 $2=2$

Terms
constants: $A, B, 2$ variables: x, y func: numberof(A)

Sentences
 vowel (A)
 above (A, B)
 $2=2$

Terms
constants: $A, B, 2$ variables: x, y func: numberof (A)

Operators: $\vee \wedge \neg \Rightarrow \Leftrightarrow()$

Sentences
 vowel (A)
 above (A, B)
 $2=2$

Terms
constants: $A, B, 2$ variables: x, y
func: numberof (A)

Operators: $\vee \wedge \neg \Rightarrow \Leftrightarrow()$
Quantifiers: $\forall x \exists y$
$\forall x$ vowel $(A) \Rightarrow$ numberof $(x)=1$
$\exists x$ numberof $(x)=2$
Note: Default is \forall.

Remember the 2-location vacuum world?

Constants: $A, B, V, D 1, D 2$
Relations: Loc, Vacuum, Dirt, At $(o, /)$

Remember the 2-location vacuum world?

Constants: $A, B, V, D 1, D 2$
Relations: Loc, Vacuum, Dirt, At $(o, /)$
Say:
(1) Vacuum is at location A :

Remember the 2-location vacuum world?

Constants: $A, B, V, D 1, D 2$
Relations: Loc, Vacuum, Dirt, At $(o, /)$
Say:
(1) Vacuum is at location A : $\operatorname{At}(V, A)$

Remember the 2-location vacuum world?

Constants: $A, B, V, D 1, D 2$
Relations: Loc, Vacuum, Dirt, At $(o, /)$
Say:
(1) Vacuum is at location $A: \operatorname{At}(V, A)$
(2) World is clean:

Remember the 2-location vacuum world?

Constants: $A, B, V, D 1, D 2$
Relations: Loc, Vacuum, Dirt, At $(o, /)$
Say:
(1) Vacuum is at location $A: \operatorname{At}(V, A)$
(2) World is clean: $\forall d \forall I \operatorname{Dirt}(d) \wedge \operatorname{Loc}(I) \Rightarrow \neg \operatorname{At}(d, I)$
(3) Vaccum is at dirty location

Remember the 2-location vacuum world?

Constants: $A, B, V, D 1, D 2$
Relations: Loc, Vacuum, Dirt, At $(o, /)$
Say:
(1) Vacuum is at location A : $\operatorname{At}(V, A)$
(2) World is clean:
$\forall d \forall I \operatorname{Dirt}(d) \wedge \operatorname{Loc}(I) \Rightarrow \neg \operatorname{At}(d, I)$
(3) Vaccum is at dirty location $\exists d \exists / \operatorname{Dirt}(d) \wedge \operatorname{Loc}(I) \wedge \operatorname{At}(d, I) \wedge$ $\operatorname{At}(V, I)$

FOL Example

FOL Example

V	S	U	
8	0	0	$\exists x, y \quad x=y$
8	0	0	$(\exists x x=x) \Rightarrow(\forall y \exists z y=z)$
\odot	0	0	$\forall x P(x) V \tau P(x)$
8	0	0	$\exists x$

Exit Survey

Exit survey: Logic

- Where would you use propositional vs. FOL?
- What is the importance of logic representation over what we saw earlier?

