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A lot of work is done on it. Why?

@ Fun, provide entertainment
@ Also, simpler than life: toy
problems

Types of game Als:

@ Adversaries

e Simulated reality (non-playable
characters, world reaction to
player).

@ Game theory (next class)
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Entry/Exit Surveys

Exit survey: Hidden Markov Models

@ In the mining robot example, when is the uncertainty of the robot's
trajectories reduced?

@ How is Particle Filtering like and unlike a water filter?

Entry survey: Adversarial Games (0.25 points of final grade)

@ What algorithm would be useful in games? Give examples with two
different algorithms you learned in class.

@ How would you help an agent solve a problem against an adversary?
Think of a game like chess or checkers for starters.
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Previously on Al for Games. . .

Can previous algorithms help in games?

@ Single-state agent:
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Previously on Al for Games. . .

Can previous algorithms help in games?

Single-state agent: vacuum world, solving a maze

Bayes Nets: card games

Machine Learning: guessing games, learning user moves

Logic, planning: board game with complex rules (Machinarium)

MDPs, Reinforcement Learning: pathfinding, optimal strategy for zerg

HMMs, Particle Filter: state estimation and future prediction, partially
observable environment with traps (sonic?)

None for adversaries?
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Properties of Games as Agent Environment

Stochastic  Part.-Observ. Unknown Adversarial | Game

Chess, Checkers
Robot Soccer
Poker
Hide-and-go-seek
Starcraft

Battle for Wesnoth
Halo/CoD/MoH
Solitaire
Minesweeper
Zuma
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Single Player Games

Deterministic, single-state agent — Single-player game using tree search
@ initial state

player state

possible actions

results of actions

utility values

goal test
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Adversarial Games

Adversarial Games

@ Start by adapting single-state agent to games
@ Define adversary as someone who wants you to lose

© And makes decisions based on the outcome of your moves
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Adversarial Games

Adversarial Games
@ Start by adapting single-state agent to games

@ Define adversary as someone who wants you to lose

© And makes decisions based on the outcome of your moves

2-player games:
@ Deterministic

@ Zero-sum: Reward
distributed between players
@ Minimax algorithm:
max & min players
choose +/- utility, resp.
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Adversarial Games

Adversarial Games
@ Start by adapting single-state agent to games

@ Define adversary as someone who wants you to lose

© And makes decisions based on the outcome of your moves

2-player games:

@ Deterministic MAX —2
@ Zero-sum: Reward [ é?
distributed between players MIN 74 V-l
@ Minimax algorithm: /
max & min players A L
choose +/- utility, resp. .
o 2 ¥ (—ﬂ) =4\
- u Cg}] :"I
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2-Player Value Function

defun value(s):

o if sis O0: U(s) mar 24N

e if sis A: maxValue(s) [ %

e if s is V: minValue(s) MIN 5% p =
A\

aw

max U (4) =
\_)U} ="
Eii i"ll
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2-Player Value Function

defun value(s):
e if sis : U(s) LA ﬁA

e if sis A: maxValue(s) [ %
e if siis V: minValue(s) MIN 7 i

defun m = maxValue(s):
m = —00

for (a,s’) in successors(s): ] U (5) "_j o
v = value(s’) RUNEnE
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2-Player Value Function

defun value(s):
e if sis : U(s) LA ﬁA

e if sis A: maxValue(s) [ %
e if siis V: minValue(s) MIN 7 i

defun m = maxValue(s): A
m = —00 :
for (a,s’) in successors(s): max U (5) = o
v = value(s’) “ulsl =
m = maxValue(m, v) -1

Assumes opponent is perfect!
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Time Complexity

For a tree with
branching factor, b, and depth, m? MAX 2 é}

Q@ O(bm)
@ o(b") MIN 3[7}’\(7-!
Q@ O(mb) é: )\

w4 Uc'ﬁ)"’

aw
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Time Complexity

For a tree with

branching factor, b, and depth, m? ANRY
Q@ O(bm) };\(7
Q@ O(b™) MIN
@ O(m®) ‘é:
For chess: b~ 30, m ~ 40
How |on.g lwould it take with: U (5) ._a,\
@ 1 billion processors x1 U») -
billion/s evals? ¢
@ seconds
@ minutes
© hours
Q years
@ forever
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Time Complexity

For a tree with

branching factor, b, and depth, m? AARY.
Q@ O(bm) %
@ O(b7) MIN }"
Q@ O(mb) 2

AN
U(j —ﬁ\

@ 1 billion processors x1 C;‘] -
billion/s evals? ¢

For chess: b~ 30, m~ 40
How long would it take with:

@ seconds
© minutes
© hours
Q years

© forever
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Space Complexity

For a tree with
branching factor, b, and depth, m? MRY. —2 é}

@ O(bm)
@ o(b™) MIN e[yév\(?-!
0 O(m) é: )\

e o < AGHEA) =
\_)Ue ="
=l
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Space Complexity

For a tree with
branching factor, b, and depth, m? MRY. —2 é}

@ O(bm)
@ o(b™) MIN 3[7}’\(7-!
° o éiix

Do not need more than total num-
ber of nodes. :
r max )=
U (5 =

aw

Giinay Spring 2013 10 / 19



Complexity Reduction?

How to do it?

@ Reduce b
@ Reduce m
© Tree — graph
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Complexity Reduction?

How to do it?

@ Reduce b
@ Reduce m
© Tree — graph

All of the above!
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defun value(s):
o if sis O0: U(s) A
e if sis A: maxValue(s) /’/Y\
e

e if siis V: minValue(s)

defun m = maxValue(s): /\ 4]\
m— o0 phEteslals

for (a,s’) in successors(s):
v = value(s’)
m = maxValue(m, v)
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defun value(s):
o if sis : U(s)

e if s is A: maxValue(s) s

e if siis V: minValue(s)

defun m = maxValue(s):
e lﬂ/g i

for (a,s’) in successors(s):
v = value(s’)
m = maxValue(m, v)
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Reducing Branching Factor, b
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Reducing Branching Factor, b
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Reducing Branching Factor, b

1
.

K f\%/\

5 (81 @ clE [l [E)

Which one to prune?
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Reducing Depth, m

Select a cutoff:
e Limit m (e.g., plan 3 steps ahead in chess)
@ Estimate terminal nodes’ utility with evaluation function

o like heuristics

@ Learn from experience
@ In chess, use board state, value of pieces, etc.
@ For value of pieces:eval(s) = >, w;p;

e can use machine learning for w;
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Formalize as Alpha-Beta Pruning

defun value(s):

cutoff at depth m’: eval(s)

if siis O: U(s)

if sis A: maxValue(s, depth, «, 3)

if sis V: minValue(s, depth, o, )
where «, 8 are overall max and min values,
resp.
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Formalize as Alpha-Beta Pruning

defun value(s):

cutoff at depth m’: eval(s)

if siis O: U(s)

if sis A: maxValue(s, depth, «, 3)

if sis V: minValue(s, depth, o, )
where «, 8 are overall max and min values,
resp.

defun v = maxValue(s, depth, , 3):
v=—00
for (a,s’) in successors(s):
v = max(v, value(s’, depth + 1, o, 3))
if v> [ return v
a = max(a, v)

Can cut up to O(b™/?)!
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Complexity Reduction by Tree — Graph

Convert into graph search problem:
@ to reach special opening and closing states
@ to make and protect from killer-moves
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Complexity Reduction by Tree — Graph

Convert into graph search problem:
@ to reach special opening and closing states
@ to make and protect from killer-moves
Utility: How many food particles can pacman eat?
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Complexity Reduction by Tree — Graph

Convert into graph search problem:
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Complexity Reduction by Tree — Graph

Convert into graph search problem:
@ to reach special opening and closing states
@ to make and protect from killer-moves
Utility: How many food particles can pacman eat?

PR
¢ (2 5 ] ]G
(RLL] “_T
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2-step limit causes horizon effect?
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Stochastic Games




Stochastic Games

defun value(s):

cutoff at depth m’: eval(s) ]
if sis O: U(s) ' %\\

)
if s is A: maxValue(s, depth, a, 3) _AVAYAN| Z X
if s is V: minValue(s, depth, a, 3) Ve @/é E C{ % %,@
if sis ?: expValue(s, depth, a, [3) & ®, 77 B
NLOLDA
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