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AI in Games

A lot of work is done on it. Why?

Fun, provide entertainment
Also, simpler than life: toy
problems

Types of game AIs:

Adversaries
Simulated reality (non-playable
characters, world reaction to
player).
Game theory (next class)
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Entry/Exit Surveys

Exit survey: Hidden Markov Models
In the mining robot example, when is the uncertainty of the robot’s
trajectories reduced?
How is Particle Filtering like and unlike a water filter?

Entry survey: Adversarial Games (0.25 points of final grade)
What algorithm would be useful in games? Give examples with two
different algorithms you learned in class.
How would you help an agent solve a problem against an adversary?
Think of a game like chess or checkers for starters.
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Previously on AI for Games. . .

Can previous algorithms help in games?
Single-state agent:

vacuum world, solving a maze
Bayes Nets: card games
Machine Learning: guessing games, learning user moves
Logic, planning: board game with complex rules (Machinarium)
MDPs, Reinforcement Learning: pathfinding, optimal strategy for zerg
HMMs, Particle Filter: state estimation and future prediction, partially
observable environment with traps (sonic?)

None for adversaries?
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Properties of Games as Agent Environment

Stochastic Part.-Observ. Unknown Adversarial Game
Chess, Checkers
Robot Soccer
Poker
Hide-and-go-seek
Starcraft
Battle for Wesnoth
Halo/CoD/MoH
Solitaire
Minesweeper
Zuma
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Single Player Games

→ → → ← ← ←

Deterministic, single-state agent → Single-player game using tree search
initial state
player state
possible actions
results of actions
utility values
goal test
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Adversarial Games

Adversarial Games
1 Start by adapting single-state agent to games
2 Define adversary as someone who wants you to lose
3 And makes decisions based on the outcome of your moves

2-player games:
Deterministic
Zero-sum: Reward
distributed between players
Minimax algorithm:
max & min players
choose +/- utility, resp.
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2-Player Value Function

defun value(s):
if s is �: U(s)
if s is M: maxValue(s)
if s is O: minValue(s)

defun m = maxValue(s):
m = −∞
for (a, s ′) in successors(s):

v = value(s ′)
m = maxValue(m, v)

Assumes opponent is perfect!
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Time Complexity

For a tree with
branching factor, b, and depth, m?

1 O(bm)

2 O(bm)

3 O(mb)

For chess: b ' 30, m ' 40
How long would it take with:

1 billion processors ×1
billion/s evals?

1 seconds
2 minutes
3 hours
4 years
5 forever
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Space Complexity

For a tree with
branching factor, b, and depth, m?

1 O(bm)

2 O(bm)

3 O(mb)

Do not need more than total num-
ber of nodes.
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Complexity Reduction?

How to do it?
1 Reduce b
2 Reduce m
3 Tree → graph

All of the above!
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Example

defun value(s):
if s is �: U(s)
if s is M: maxValue(s)
if s is O: minValue(s)

defun m = maxValue(s):
m = −∞
for (a, s ′) in successors(s):

v = value(s ′)
m = maxValue(m, v)
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Reducing Branching Factor, b

Which one to prune?
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Reducing Depth, m

Select a cutoff:
Limit m (e.g., plan 3 steps ahead in chess)
Estimate terminal nodes’ utility with evaluation function

like heuristics

Learn from experience
In chess, use board state, value of pieces, etc.
For value of pieces:eval(s) =

∑
i wipi

can use machine learning for wi
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Formalize as Alpha-Beta Pruning

defun value(s):
cutoff at depth m′: eval(s)
if s is �: U(s)
if s is M: maxValue(s, depth, α, β)
if s is O: minValue(s, depth, α, β)

where α, β are overall max and min values,
resp.

defun v = maxValue(s, depth, α, β):
v = −∞
for (a, s ′) in successors(s):

v = max(v , value(s ′, depth + 1, α, β))
if v > β return v
α = max(α, v)

Can cut up to O(bm/2)!
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Complexity Reduction by Tree → Graph

Convert into graph search problem:
to reach special opening and closing states
to make and protect from killer-moves

Utility: How many food particles can pacman eat?

2-step limit causes horizon effect?
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Stochastic Games
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Stochastic Games

defun value(s):
cutoff at depth m′: eval(s)
if s is �: U(s)
if s is M: maxValue(s, depth, α, β)
if s is O: minValue(s, depth, α, β)
if s is ?: expValue(s, depth, α, β)
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Coin-flip Game
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