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State of the art subjects: build order planning, over state estimation, plan
recognition. . .
Article on 2010 winner: Berkeley Overmind bot

http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/
http://arstechnica.com/gaming/2011/01/skynet-meets-the-swarm-how-the-berkeley-overmind-won-the-2010-starcraft-ai-competition/


MDPs and RL for games: Civilization

2010 Paper on playing Civilization IV; uses:
Markov Decision Processes
Reinforcement Learning, a model-based
Q-learning approach

Compares strategies and parameters on winning
outcomes.
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http://people.csail.mit.edu/camato/publications/LearningInCiv-final.pdf


And Now, Game Theory

Game theory applies when:
partially-observable, or
with simultaneous moves (e.g., StarCraft).

Game theory deals more with cases like:
Diplomacy/war between enemies
Bidding
Creating win-win scenarios
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Entry/Exit Surveys

Exit survey: Adversarial Games
How do you reduce the tree search complexity of a turn-by-turn game
like chess?
Give an example for a game that we haven’t studied in class which can
be solved with the minimax algorithm. Suggest an evaluation function
at the cutoff nodes.

Entry survey: Game Theory (0.25 points of final grade)
Can we use minimax tree search work in simultaneous moves? Briefly
explain why or why not?
Think that you will have to make the move of the US side in a Cold
War scenario. How would you consider the opponent’s move,
uncertainty, and secrecy?

Günay Ch. 17.5–6, Game Theory Spring 2013 5 / 16



Terminology: 2 Prisoners Dilemma

More like in Law and Order or The Closer:
2 suspects in separate interrogation rooms.

Each can either:
1 Testify against the other, or
2 Refuse to speak.

A: testify A: refuse
B : testify A = −5,B = −5 A = −10,B = 0
B : refuse A = 0,B = −10 A = −1,B = −1

Dominant strategy: Selfish decision that is always better.
For A and B? Testifying is dominant.

Pareto optimal: If no better solution for both players exist.
Which condition? Three of them.

Nash equilibrium: Local minima; single player switch does not improve.
Is there one? Testifying, again.
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Terminology (2): Game Console Game

Console producer (A) vs. game developer (B), need to decide between:
Blu-ray vs. DVD

A: bluray A: dvd
B : bluray A = +9,B = +9 A = −4,B = −1
B : dvd A = −3,B = −1 A = +5,B = +5

Dominant strategy: Selfish decision that is always better.
For A and B? None!

Pareto optimal: If no better solution for both players exist.
Which condition? Only one.

Equilibrium: Local minima; single player switch does not improve.
Is there one? Two cases.
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Strategies: 2 Finger Morra Game

Difficult, zero-sum betting game:
1 Show a number of fingers
2 Player betting on odd (O) or even (E ) wins based on total fingers

O: one O: two
E : one E = +2 E = −3
E : two E = −3 E = +4

Dominant strategy: Selfish decision that is always better. None!

Utility of E :
−3 ≤ UE ≤ 2
Not very sure?
Handicapped?
Use mixed strategy
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Mixed Strategy: 2 Finger Morra

O: one O: two
E : one E = +2 E = −3
E : two E = −3 E = +4

Calculate E ’s utility
for both players’
mixed strategies.
Mixed strategy:
Leave opponent no
choice!

Parameterize with probabilities:

Optimal p for E :
2p − 3(1− p) = −3p + 4(1− p)

p = 7/12
UE = 2p − 3(1− p)

= −1/12

≤ UE ≤

Optimal q for O:
2q − 3(1− q) = −3q + 4(1− q)

q = 7/12
UE = 3q + 4(1− q)

= −1/12
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Mixed Strategy Issues

Secrecy and Rationality:
Secrecy: If a dominant strategy exists, your opponent can guess it!

Rationality: Sometimes it’s better to look crazy to make your opponent
believe you will do something irrational.

A riddle for you.
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Mixed Strategy Example

Zero-sum game with min and max:

O : 1 O : 2
M: 1 M= 5 3
M: 2 4 2

Let’s solve it?

No, need! Dominant strategies exist!

1 We know what to do
2 We can guess the other rational player’s move

Therefore,
UE = 5 .
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Another Mixed Strategy Example

O : 1 O : 2
M: 1 M= 3 6
M: 2 4 5

Dominant strategies?

None for M.
Need to calculate only probability p, because dominant q = 0.

3p + 5(1− p) = 6p + 4(1− p)
p = 1/4

UM = 4.5

Based on M’s decision,

UM = 3q + 6(1− q)
= 6

or

UM = 5q + 4(1− q)
= 4

Therefore,
4 ≤ UM ≤ 6 .
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Poker

Simplified!
Deck has only ace and kings:
AAKK
Deal: 1 card each

Rounds:
1 raise/check
2 call/fold

Sequential game/
extensive form

Real game has how many
states? ∼ 1018

0 

1 

1 

1 

1 

2 

2 

2 

2 

0,0!

+1,-1!

0,0!

-1,+1!

1/6: AA

r 

k 

r 

k 

r 

k 

r 

k 

+1,-1!

+1,-1!

+1,-1!

+1,-1!

0,0!

+2,-2

0,0

-2,+2

c 

f 

c 

f 

c 

f 

c 
f 

1/3: KA

1/3: AK

1/6: KK

2 

I1,1 

I1,2 I2,1 

I2,2 

I2,1 
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So How To Solve Non-Simplified Games?

Strategies:
abstracting; lumping together:

Don’t care about aces’ suits, all aces equal
Lump similar cards together: cards 1–7 together
Bets: small and large
Deals: Monte Carlo sampling

In summary, game theory is:
Good for: simultaneous moves, stochasticity, uncertainty, partial
observability, multi-agent, sequential, dynamic

Not good for: unknown actions, continuous actions, irrational
opponents, unknown utility
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Game: Feds vs. Politicians

Game between:
1 Federal reserve and
2 Politicians

on controlling the budget.

Find equilibrium below:
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Alturistic Side of Game Theory: Mechanism Design

Mechanism Design:
Design to get the most for the game for: players, game itself, or public
Example: advertisements

Strategy: design game to have dominant strategy
Example: second-price auctions (like eBay)
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