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Computer Vision

e Done with games, except homework :)
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Computer Vision

e Done with games, except homework :)

©

@ Vision is one of our main perceptions
e Computer vision is what robots use to
understand their surrounding
3 lectures:
@ Object recognition (today)
@ 3D reconstruction

© Motion analysis
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Entry/Exit Surveys

Exit survey: Advanced Planning

@ Why isn't classical planning schema adequate for resource planning?

@ What is the advantage gained in abstract plans by having
surely-reachable versus potentially-reachable states?

Entry survey: Computer Vision | — Image Processing (0.25 points)

o List three specific tasks where computer vision would be desirable.

@ What do you think are the major hurdles in computer vision?
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How Machines See: Cameras

A charge-coupled device (CCD) photo sensor array:
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See the videos, I'll summarize:

Focal Optics for Determining Distance and Size

X x
Z f
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See the videos, I'll summarize:

Focal Optics for Determining Distance and Size

What can we can figure out from this?

@ Object’s distance (Z) & height (X) based on projection height (x)
and focal distance (f)
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We All See a Perspective Projection

Vanishing points from parallel lines:
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We All See a Perspective Projection

Vanishing points from parallel lines:

Giinay Spring 2013 6 /27



We All See a Perspective Projection

Vanishing points from parallel lines:

e Giant panda, or just close?
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Object Recognition: How Hard Can It Be?

A
)
LIES
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Object Recognition: How Hard Can It Be?

Problems?
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Object Recognition: How Hard Can It Be?

Problems?

@ Rotation, scale, illumination, occlusion, viewpoint, deformation
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Not Hard for Us
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Not Hard for Us
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Diffuse reflection, bright

Specularities

Diffuse reflection, dark ~ Cast shadow
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Not Hard for Us

Diffuse reflection, bright

Specularities

Diffuse reflection, dark ~ Cast shadow

How does our brain do it?
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Not Hard for Us

Diffuse reflection, bright

Specularities

Diffuse reflection, dark ~ Cast shadow

How does our brain do it? Will have examples later.
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Invariance is Crucial for Computer Vision

Must recognize objects invariant of their:

@ Rotation, scale, illumination, occlusion, viewpoint, deformation
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Invariance is Crucial for Computer Vision

Must recognize objects invariant of their:

@ Rotation, scale, illumination, occlusion, viewpoint, deformation
Let's start by simplifying:

@ Greyscale (monochrome) images

@ Pixels can have values: 0...255
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Even Terminator Has Monochrome Vision
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Extracting Features: Edge Detection
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Extracting Features: Edge Detection
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Extracting Features: Edge Detection

How to detect the vertical edge?

o = - = DA
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Extracting Features: Edge Detection

How to detect the vertical edge?
@ Spatial derivative?

o = - = DA
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Extracting Features: Edge Detection

How to detect the vertical edge?
@ Spatial derivative?

@ Filter with mask: L - .



Extracting Features: Edge Detection

How to detect the vertical edge?
@ Spatial derivative?

@ Filter with mask:

DQAC
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Extracting Features: Edge Detection
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Extracting Features: Edge Detection
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Edge Detection: Linear Filter

What we did is called convolution:
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Edge Detection: Linear Filter

What we did is called convolution:

I og= I

QKM=

For each pixel, we multiply by mask and sum:

I(x,y) = Z/x—uy—v)g( V)
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Edge Detection: Linear Filter

What we did is called convolution:

I og= I

QKM=

For each pixel, we multiply by mask and sum:
"(x,y) = Z/ x—u,y—v)g(u,v)

Does that equation look familiar?
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Edge Detection: Linear Filter

What we did is called convolution:

I og= I

QKM=

For each pixel, we multiply by mask and sum:

I(x,y) = Z/x—uy—v)g( V)

. . Inputs  Weights
Does that equation look familiar? r, w,

Perceptron?

Threshold T
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Edge Detection: Linear Filter

What we did is called convolution:

I og= I

QKM=

For each pixel, we multiply by mask and sum:

I(x,y) = Z/x—uy—v)g( V)

. . Inputs  Weights
Does that equation look familiar? r, w,

Perceptron?

@ What are the weights? k
The mask, g.

Threshold T

Giinay Spring 2013 12 / 27



Edge Detection: Linear Filter

What we did is called convolution:

I og= I

QKM=

For each pixel, we multiply by mask and sum:

I(x,y) = Z/x—uy—v)g( V)

Inputs  Weights

Does that equation look familiar? r, w,
Perceptron? . Output
¥
@ What are the weights? k
Threshold T
The mask, g.
@ What's the advantage? W
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Edge Detection: Linear Filter

What we did is called convolution:

I og= I

QKM=

For each pixel, we multiply by mask and sum:

I(x,y) = Z/x—uy—v)g( V)

Inputs  Weights

Does that equation look familiar? r, w,
Perceptron? . Output
¥
@ What are the weights? k
Threshold T
The mask, g.
@ What's the advantage? W

Works in parallel!
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Neurons Can Do It Faster?

Visual Cortices

Parietal Lobe

LGN
Occipital Lobe

'
V3a (Motion)

V3 (Form) Exirastriate Cortex

V2 (Relays signals)

Temporal V1 (Catalogs Input)  Striate Cortex

Lobe

VP (Relays signals)

Visual

Radiation W4 (Cokat end Form) Extrastriate Cortex

V8

o,
Sagittal Section ;% .
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Detect Only Vertical Edges?

DQAC
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Detect Only Vertical Edges?

DQAC
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Horizontal and Vertical Gradients

Original:
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Horizontal and Vertical Gradients

Vertical gradient:
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Horizontal and Vertical Gradients

Horizontal gradient:
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Combining Gradients

Horizontal mask gives vertical gradient (/x) and vice versa:

o= 1o -1 +1
-1
o= e
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Combining Gradients

Horizontal mask gives vertical gradient (/x) and vice versa:

o= 1o -1 +1
-1
o= e

How to combine them?
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Combining Gradients

Horizontal mask gives vertical gradient (/x) and vice versa:

o= 1o -1 +1
-1
o= e

How to combine them?

N
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Horizontal and Vertical Gradients

Combined gradients:
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Horizontal and Vertical Gradients

Original:

Giinay Spring 2013 17 / 27



Horizontal and Vertical Gradients

Horizontal gradient:
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Horizontal and Vertical Gradients

Vertical gradient:
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Canny Edge Detector is Uncanny!

Combined gradients:
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Canny Edge Detector is Uncanny!

Canny edge detector (by John Canny):
o

Giinay Spring 2013 18 / 27



Other Edge Detection Masks
20-2

[...] ]
[EEE] [£22]

[338] [338]
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A Gaussian Mask?
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A Gaussian Mask?

What will it do?
@ Edge filter
@ Dot filter
© Corner
Q Blur
© Sharpen
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A Gaussian Mask?
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@ Edge filter
@ Dot filter
© Corner
Q Blur
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A Gaussian Mask?

What will it do?
@ Edge filter
@ Dot filter
© Corner
Q Blur
© Sharpen
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A Gaussian Mask?

What will it do? ) . .
What's the Point of Blurring Images?

© Edge filter .
@ Dot filter © Downsampling
© Corner @ Noise reduction
Q Blur

© Sharpen
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Gaussian Mask in Action

Canny filter:
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Gaussian Mask in Action

Canny with Gaussian:
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Tricks with Linear Filters

'=lofog
where
f is Gaussian mask and

g is gradient mask.
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'=lofog
where
f is Gaussian mask and
g is gradient mask.
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=Igxf
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Tricks with Linear Filters

'=lofog

where

f is Gaussian mask and
g is gradient mask.

Does the order matter? No. Linear operations are transitive.
=Igxf

Can we combine them?
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Tricks with Linear Filters

'=lofog

where

f is Gaussian mask and
g is gradient mask.

Does the order matter? No. Linear operations are transitive.

=Igxf

Can we combine them? Yes. We'll get a new linear mask/kernel.

=I®(frg)

Giinay Spring 2013 22 /27



Gaussian Mask Combined with Gradient

‘
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Neurons Are Doing Exactly That!
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J Jin, Y Wang, HA Swadlow & JM Alonso (2011)
“Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex”

Nature Neuroscience 14(2): 232-238. doi:10.1038/nn.2729
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Corner Detection
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Corner Detection
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Corner Detection
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Modern Feature Detectors

They are:
@ Localizable
@ Unique signatures
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Modern Feature Detectors

They are:
@ Localizable
@ Unique signatures
Two major algorithms:
@ HOG: Histogram of Oriented Gradients

@ SiFT: Scale-invariant Feature Transform
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SiFT in Action
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