CS325 Artificial Intelligence Ch. 24, Computer Vision I – Object Recognition

Cengiz Günay, Emory Univ.

Spring 2013

Ch. 24, Computer Vision I – Object Rec

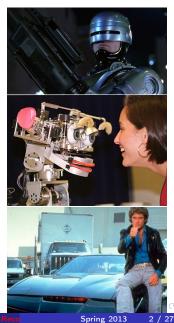
Computer Vision

• Done with games, except homework :)

Computer Vision

• Done with games, except homework :)

- Vision is one of our main perceptions
- **Computer vision** is what robots use to understand their surrounding



Ch. 24, Computer Vision I – Object Reco

Computer Vision

• Done with games, except homework :)

- Vision is one of our main perceptions
- **Computer vision** is what robots use to understand their surrounding

3 lectures:

- Object recognition (today)
- 2 3D reconstruction
- Motion analysis

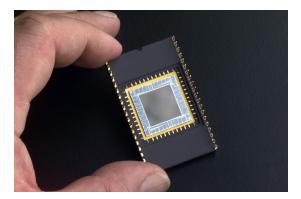
Exit survey: Advanced Planning

- Why isn't classical planning schema adequate for resource planning?
- What is the advantage gained in abstract plans by having *surely-reachable* versus *potentially-reachable* states?

Entry survey: Computer Vision I – Image Processing (0.25 points)

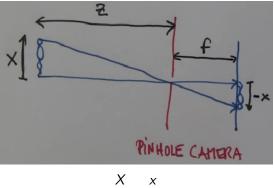
- List three specific tasks where computer vision would be desirable.
- What do you think are the major hurdles in computer vision?

A charge-coupled device (CCD) photo sensor array:



Focal Optics for Determining Distance and Size

See the videos, I'll summarize:

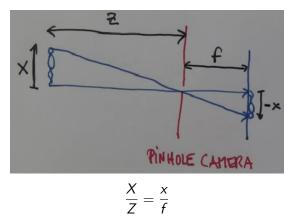


$$\overline{Z} = \overline{f}$$

Spring 2013 5 / 27

Focal Optics for Determining Distance and Size

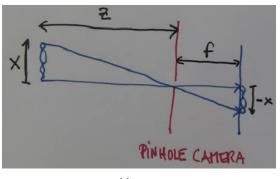
See the videos, I'll summarize:



What can we can figure out from this?

Focal Optics for Determining Distance and Size

See the videos, I'll summarize:



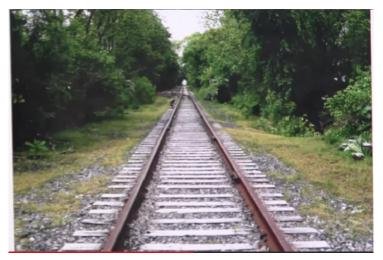
$$\frac{X}{Z} = \frac{x}{f}$$

What can we can figure out from this?

• Object's distance (Z) & height (X) based on projection height (x) and focal distance (f)

Spring 2013 5 / 27

Vanishing points from parallel lines:



Vanishing points from parallel lines:

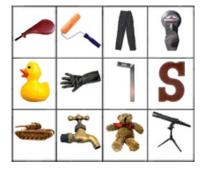
Vanishing points from parallel lines:

Vanishing points from parallel lines:

• Giant panda, or just close?

Günay

Object Recognition: How Hard Can It Be?



Günay

Object Recognition: How Hard Can It Be?

Problems?

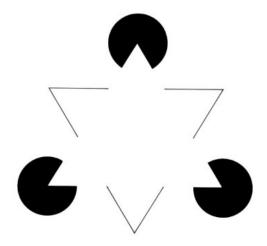
Object Recognition: How Hard Can It Be?

Problems?

• Rotation, scale, illumination, occlusion, viewpoint, deformation

Günay

Ch. 24, Computer Vision I – Object Recc

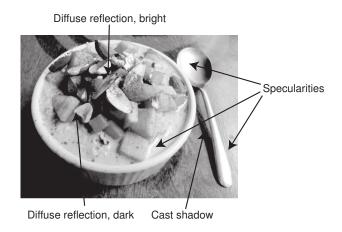


< 17 × <

Not Hard for Us

Günay

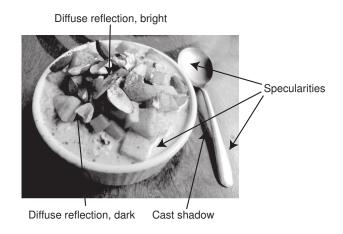
Ch. 24, Computer Vision I – Object Reco



Ch. 24, Computer Vision I – Object Reco

Spring 2013 8 / 27

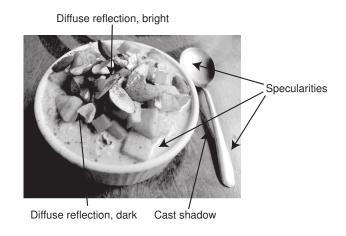
< A



How does our brain do it?

Günay

Spring 2013 8 / 27



How does our brain do it? Will have examples later.

Günay

Spring 2013 8 / 27

Must recognize objects invariant of their:

• Rotation, scale, illumination, occlusion, viewpoint, deformation

Must recognize objects invariant of their:

- Rotation, scale, illumination, occlusion, viewpoint, deformation Let's start by simplifying:
 - Greyscale (monochrome) images
 - 2 Pixels can have values: 0...255

Even Terminator Has Monochrome Vision

ANALYSIS: SERIES 1000 TERMINATOR PROTOTYPE	DEFENSE MODE LEVEL 69825	DAMAGE TAKEN: 46% RUNNING ON 53% ENERGY
01. T-1000 STATUS 02. RATIO OF ATTACK 03. 83%	· ····································	21 BULLETS LEFT IN CLIP
04, A1 = 5489 05, A2 = D0933 06, A3 = F8367 07, A4 = G0894 08, DISTANCE 4FT		
09. A5 = H9837 10. A6 = J0948 11. A7 = K8364	State State	
12. A8 E 13748 13. A9 E 23844 POSSIBILITY OF T-1000 TERMINATION: 52%	TARGET AQUIRED	VISUAL: TERMINATOR MODEL 1000
14. 9846592834 15. 2094875204 16. 8704522456 17. VISUAL IN SITE 18. 6775236724		CAUTION: T-1000 CAPABLE OF KNIVES AND STABBING WEAPONS EQUIPED WITH HANDGUN
19. 2145987087 20. 5983745809 21. 087435334 22. 0876483456 23.87560983475689347 24.87076345465421234		VULNERABLE TO MOLTEN STEEL AND LIQUID NITROGEN
25.74657483230856723 26.74652963745692367 27.75747503786785747 28.485843983444357984 29.4578638476508475308		31108
30.5763/084763/086753 31.47560238745089763 32.47577458868338568 33.46637594786285975 34.7429384455943554 35.75345062347523049	PRIMARY MISSION: ENSURE THE SURVIVAL OF JOHN CONNOR	•

Günay

Ch. 24, Computer Vision I – Object Reco

Spring 2013

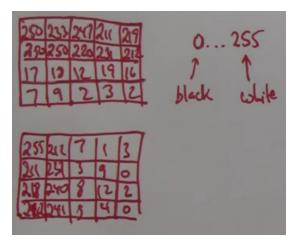
10 / 27

Günay

Ch. 24, Computer Vision I – Object Reco

Spring 2013 11

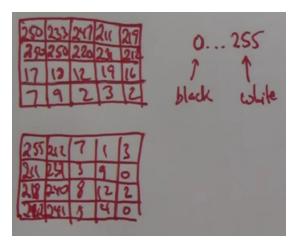
11 / 27



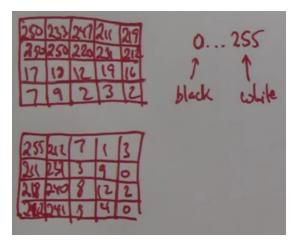
Günay

Spring 2013 11 / 27

э

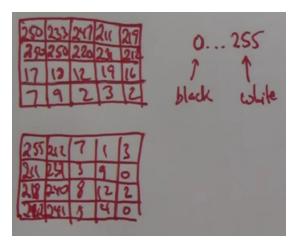


How to detect the vertical edge?



How to detect the vertical edge?

Spatial derivative?

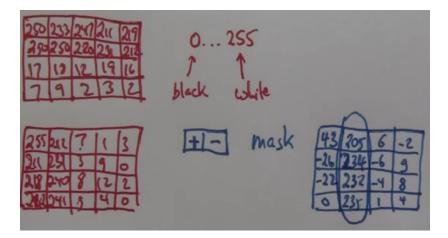


How to detect the vertical edge?

+1

Spatial derivative?

e Filter with mask:



How to detect the vertical edge?

+1

 $^{-1}$

Spatial derivative?

e Filter with mask:

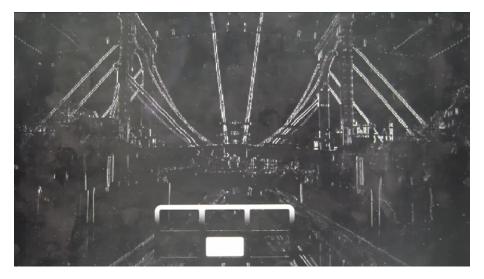
Günay

Ch. 24, Computer Vision I – Object Reco

11 / 27

How to detect the vertical edge?

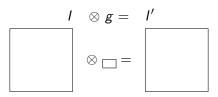
Spatial derivative?



How to detect the vertical edge?

Spatial derivative? Günay

What we did is called **convolution**:



э

What we did is called **convolution**:

$$I \otimes g = I'$$
$$\otimes \Box =$$

For each pixel, we multiply by mask and sum:

$$I'(x,y) = \sum_{u,v} I(x-u,y-v) g(u,v)$$

Günay

What we did is called **convolution**:

$$I \otimes g = I'$$
$$\otimes \Box =$$

For each pixel, we multiply by mask and sum:

$$I'(x,y) = \sum_{u,v} I(x-u,y-v) g(u,v)$$

Does that equation look familiar?

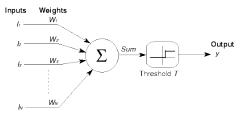
What we did is called **convolution**:

$$I \otimes g = I'$$
$$\otimes \Box =$$

For each pixel, we multiply by mask and sum:

$$I'(x,y) = \sum_{u,v} I(x-u,y-v) g(u,v)$$

Does that equation look familiar? Perceptron?



Ch. 24, Computer Vision I – Object Reco

What we did is called **convolution**:

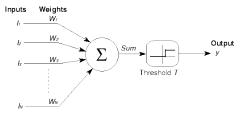
$$I \otimes g = I'$$
$$\otimes \Box =$$

For each pixel, we multiply by mask and sum:

$$I'(x,y) = \sum_{u,v} I(x-u,y-v) g(u,v)$$

Does that equation look familiar? Perceptron?

• What are the weights?



What we did is called **convolution**:

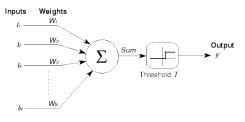
$$I \otimes g = I'$$
$$\otimes \Box =$$

For each pixel, we multiply by mask and sum:

$$I'(x,y) = \sum_{u,v} I(x-u,y-v) g(u,v)$$

Does that equation look familiar? Perceptron?

• What are the weights? The mask, *g*.



What we did is called **convolution**:

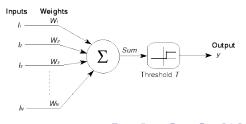
$$I \otimes g = I'$$
$$\otimes \Box =$$

For each pixel, we multiply by mask and sum:

$$I'(x,y) = \sum_{u,v} I(x-u,y-v) g(u,v)$$

Does that equation look familiar? Perceptron?

- What are the weights? The mask, *g*.
- What's the advantage?



What we did is called **convolution**:

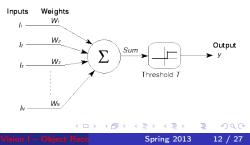
$$I \otimes g = I'$$
$$\otimes \Box =$$

For each pixel, we multiply by mask and sum:

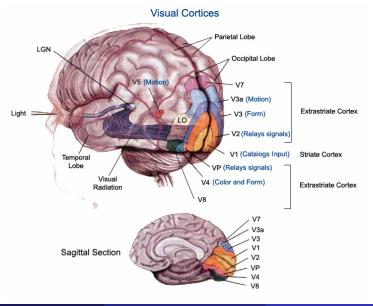
$$I'(x,y) = \sum_{u,v} I(x-u,y-v) g(u,v)$$

Does that equation look familiar? Perceptron?

- What are the weights? The mask, *g*.
- What's the advantage?
 Works in parallel!
 Günay



Neurons Can Do It Faster?



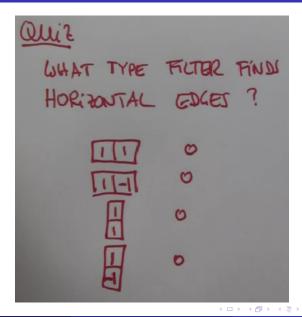
Günay

Ch. 24, Computer Vision I – Object Reco

Spring 2013 13 / 27

э

Detect Only Vertical Edges?



Detect Only Vertical Edges?

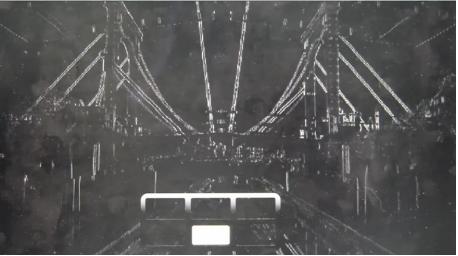
WHAT TYPE FILTER FINDS HORIZONTAL EDGES ? 0 0 6 0

Günay

Ch. 24, Computer Vision I – Object Reco

Original:

Vertical gradient:

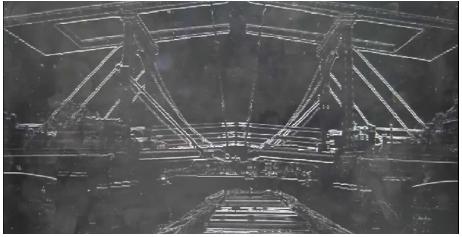


Günay

Ch. 24, Computer Vision I – Object Reco

Spring 2013 15 / 27

Horizontal gradient:



Günay

Spring 2013 15 / 27

Horizontal mask gives vertical gradient (I_x) and vice versa:

$$I_x = I \otimes \boxed{-1 + 1}$$
$$I_y = I \otimes \boxed{-1 + 1} + 1$$

Horizontal mask gives vertical gradient (I_x) and vice versa:

$$I_{x} = I \otimes \boxed{-1 + 1}$$

$$I_{y} = I \otimes \boxed{-1 + 1}$$

How to combine them?

Horizontal mask gives vertical gradient (I_x) and vice versa:

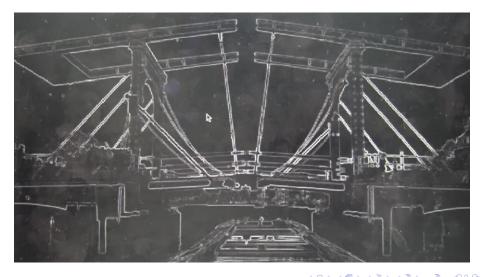
$$I_{x} = I \otimes \boxed{-1 + 1}$$

$$I_{y} = I \otimes \boxed{-1 + 1}$$

How to combine them?

$$E = \sqrt{I_x^2 + I_y^2}$$

Combined gradients:



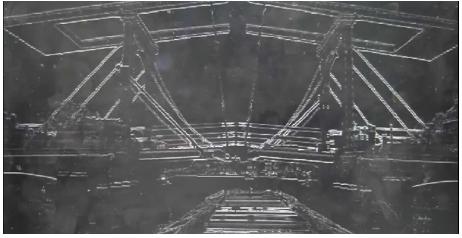
Original:

Günay

Ch. 24, Computer Vision I – Object Reco

Spring 2013 17 / 27

Horizontal gradient:

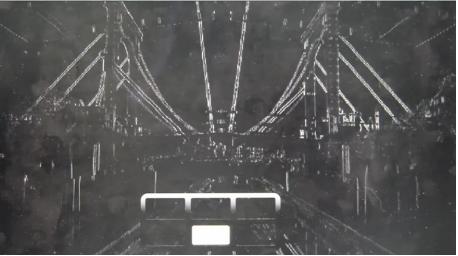


Günay

Ch. 24, Computer Vision I – Object Reco

Spring 2013 17 / 27

Vertical gradient:



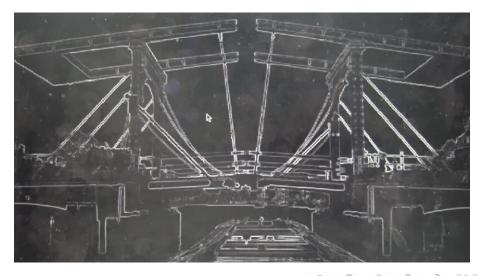
Günay

Ch. 24, Computer Vision I – Object Reco

Spring 2013 17 / 27

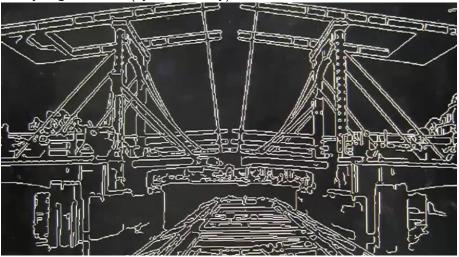
Canny Edge Detector is Uncanny!

Combined gradients:

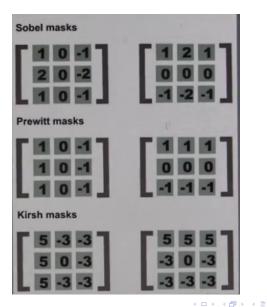


Canny Edge Detector is Uncanny!

Canny edge detector (by John Canny):



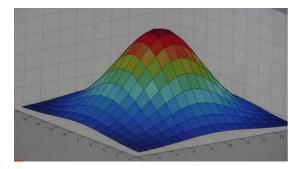
Other Edge Detection Masks



Ch. 24, Computer Vision I – Object Reco

Spring 2013 19 / 27

글 🕨 🛛 글



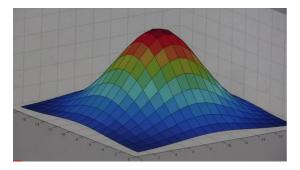
Günay

Ch. 24, Computer Vision I – Object Reco

Spring 2013 20 / 27

< A

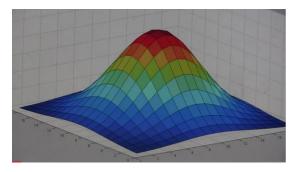
æ



What will it do?

- Edge filter
- 2 Dot filter
- Orner
- 4 Blur
- Sharpen

Günay

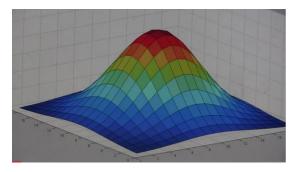


What will it do?

- Edge filter
- 2 Dot filter
- Orner
- In Blur
- Sharpen

Günay

What's the Point of Blurring Images?



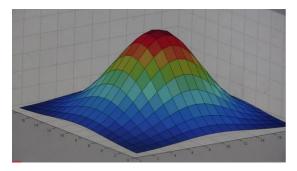
What will it do?

- Edge filter
- Oot filter
- Orner
- Blur

Günay

What's the Point of Blurring Images?

Downsampling



What will it do?

- Edge filter
- Oot filter
- Orner
- 4 Blur

What's the Point of Blurring Images?

- Ownsampling
- Olise reduction

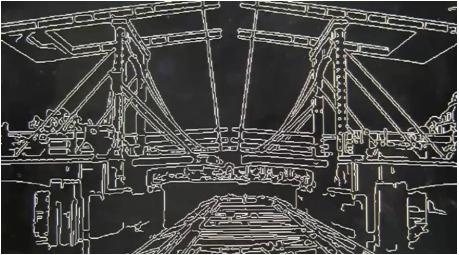
Ch. 24, Computer Vision I – Object Reco

Spring 2013

20 / 27

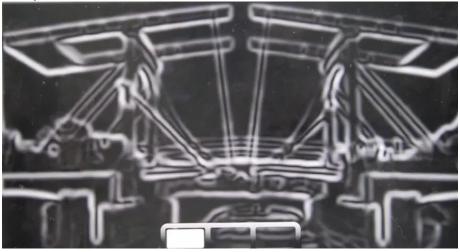
Gaussian Mask in Action

Canny filter:



Gaussian Mask in Action

Canny with Gaussian:



Günay

Ch. 24, Computer Vision I – Object Recc

Spring 2013 21 / 27

- I A P

$$I' = I \otimes f \otimes g$$

where

- f is Gaussian mask and
- g is gradient mask.

$$I' = I \otimes f \otimes g$$

where

- f is Gaussian mask and
- g is gradient mask.

Does the order matter?

$$I' = I \otimes f \otimes g$$

where

f is Gaussian mask and

g is gradient mask.

Does the order matter? No. Linear operations are transitive.

 $= I \otimes g \otimes f$

$$I' = I \otimes f \otimes g$$

where

f is Gaussian mask and

g is gradient mask.

Does the order matter? No. Linear operations are transitive.

 $= I \otimes g \otimes f$

Can we combine them?

$$I' = I \otimes f \otimes g$$

where

f is Gaussian mask and

g is gradient mask.

Does the order matter? No. Linear operations are transitive.

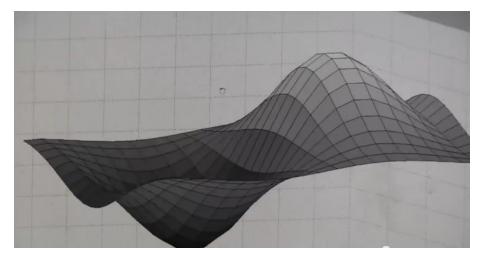
 $= I \otimes g \otimes f$

Can we combine them? Yes. We'll get a new linear mask/kernel.

$$= I \otimes (f \otimes g)$$

Günay

Gaussian Mask Combined with Gradient



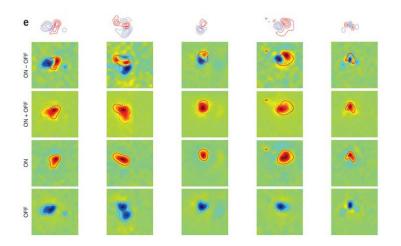
Günay

Ch. 24, Computer Vision I – Object Reco

Spring 2013 23 / 27

∃ >

Neurons Are Doing Exactly That!



J Jin, Y Wang, HA Swadlow & JM Alonso (2011)

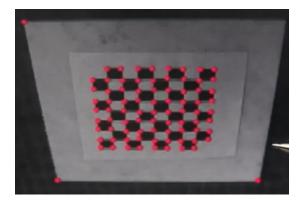
"Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex"

Nature Neuroscience 14(2): 232-238. doi:10.1038/nn.2729

Günay

2h. 24, Computer Vision I – Object Rec

Spring 2013 24 / 27



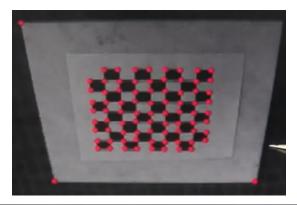
Ch. 24, Computer Vision I – Object Reco

Spring 2013 25 / 27

3

イロト イヨト イヨト イヨト

Corner Detection

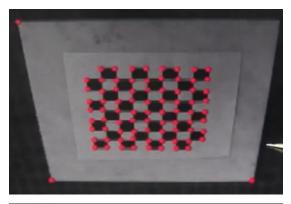


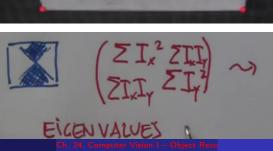
HARRIS CORNER DETECTOR $\Sigma (I_x)^2 \rightarrow LARCE] (ORNER$ $<math>\Sigma (I_y)^2 \rightarrow LARCE]$ Spring 2013

Günay

25 / 27

Corner Detection





Günay

Spring 2013 25 / 27 They are:

Onique signatures

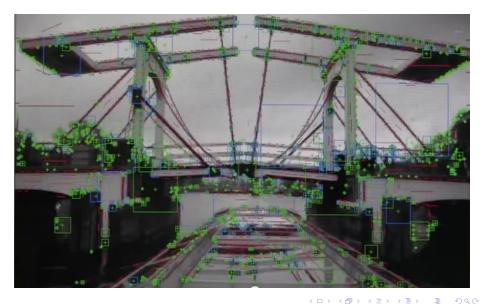
They are:

- Localizable
- Onique signatures

Two major algorithms:

- HOG: Histogram of Oriented Gradients
- SiFT: Scale-invariant Feature Transform

SiFT in Action



Günay

Ch. 24, Computer Vision I – Object Reco

Spring 2013 27 / 27