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Limits of 2D Projection

3D world is projected onto 2D image
What happens to depth information?
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Getting the Depth from Perspective Projection

Giant panda, or just close?
Can only tell if we know exactly the size.
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Alternative?

Use your two eyes: Stereo Vision
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Entry/Exit Surveys

Exit survey: Computer Vision I – Object Recognition
List some problematic states of objects for which an object recognition
algorithm must be invariant for.
What kind of a filter mask would you convolve with an image to
detect diagonal lines?

Entry survey: Computer Vision II – 3D Vision (0.25 points)
What tasks would you find difficult if you had only one eye open?
How do you think stereograms are made?
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Stereo Vision

P : Target object.
Z : Distance to object.
B : Baseline; separation between eyes.

x1, x2 : Disparity or parallax; different offsets at each eye.

Can we always find depth of P? No, only sometimes.
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Stereo Vision: Which One is Easier?

L R

L R
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Stereo Vision: How to Find Depth?

What’s different here? What don’t we need to find depth? Original size.
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Finding Correspondence Between Left and Right Images

Left Right

P
?

Where do we search on the right image?
1 2D: everywhere
2 1D: on a line
3 0D: we know the point
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Correspondence Problems

You get Phantom Points if you get the correspondence wrong.
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A Real Correspondence Example

Can we find correspondence with any of:
1 Texture match?
2 Feature match?

Both, actually.
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Texture Match with SSD

SSD is not solid state drive, but it is sum of squared distance
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Sum of Squared Distance (SSD)
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Sum of Squared Distance (SSD)

Günay () Computer Vision II – 3D Vision (Ch. 24) Spring 2013 15 / 22



The Result: Disparity Maps
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https://www.youtube.com/watch?feature=player_detailpage&v=YPfs7DbAjfM#t=51s


How About Occlusions?

Left Right
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Using Cost to Optimize Correspondence
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So How to Compute Best Alignment?

Use dynamic programming:
calculate correspondence matrix with O(n2):

Does this look familiar?
Can we use MDP?
V (i , j) =

max


match(i , j) + V (i − 1, j − 1)
occl(i , j) + V (i − 1, j)
occl(i , j) + V (i , j − 1)

State-of-the-art in computer vision!
How would the brain do it?

In parallel, each node in matrix a
separate neuron
How fast? O(1)
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Alignment Questions
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Problem Cases for Alignment

Problems with: Foreground-background separation and circular edges.
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Problem Cases for Alignment

Problems with: Reflection.
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New Technologies
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