CS325 Artificial Intelligence

Natural Language Processing Il (Ch. 23)

Dr. Cengiz Giinay, Emory Univ.
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So Probabilities Enough for Understanding Language?

He came from out of nowhere.
From out of nowhere, he came.

@ Same meaning but different ordering: non-Markovian.
@ How do we understand that both sentences have similar meaning?

o Look at sentence structure: “from out of nowhere” and “he came”

Today:
@ Using sentence structure in NLP
@ Machine translation

© Speech recognition (no time, see textbook)
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Entry/Exit Surveys

Exit survey: Natural Language Processing |

@ What is a good method for identifying foreign languages?

@ How do we improve bag of words to learn word sequences?

Entry survey: Natural Language Processing Il (0.25 pts)

o Give some examples of why learning sentence structure may be useful.

@ What was the most useful machine translation tool you ever used?
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Uses of Sentence Structure in NLP

Can be useful for:

@ Disambiguation of phrases
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Uses of Sentence Structure in NLP

Can be useful for:
@ Disambiguation of phrases
@ Understanding meaning

@ Translation

Giinay () Spring 2013 4 /18



Strike a match. |

Giinay () Spring 2013 5 /18



Strike a match. |

Giinay () Spring 2013 5 /18



Strike a match. |

Giinay () Spring 2013 5 /18



How Can We Use the Sentence Structure?

Hint:
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Where Do the Trees Come From?

From the forest?
Seriously, from:

The grammar:

S — VP|NP

VP — VNP|V

NP — N|NN|NNN
N — strike|match
V — strike|match
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Where Do the Trees Come From?

From the forest?
Seriously, from:

The grammar:

S — VP|NP

VP — VNP|V

NP — N|NN|NNN
N — strike|match
V — strike|match

v

Results in multiple possible parses of the same sentence.
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Multiple Possible Parsleys

Parses, parsings, or parsleys
(whatever)
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Use Probabilities and Grammar Together

context-free grammar: Words are expanded without context
(e.g., S — VP|NP). Used with programming languages.
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(e.g., S — VP|NP). Used with programming languages.
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Use Probabilities and Grammar Together

context-free grammar: Words are expanded without context
(e.g., S — VP|NP). Used with programming languages.

“strike a match”

The probabilistic grammar:

S - VP(0.7)|NP(0.3)

VP — V NP(0.6)|V(0.4)

NP — N(0.6)|N N(0.3)|N N N(0.1)
N — strike(0.4)|match(0.7)
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Use Probabilities and Grammar Together

context-free grammar: Words are expanded without context
(e.g., S — VP|NP). Used with programming languages.
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“strike a match”

The probabilistic grammar:

S - VP(0.7)|NP(0.3)

VP — V NP(0.6)|V(0.4)

NP — N(0.6)|N N(0.3)|N N N(0.1)
N — strike(0.4)|match(0.7)

V — strike(0.6)|match(0.3)
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Use Probabilities and Grammar Together

context-free grammar: Words are expanded without context

(e.g., S — VP|NP). Used with programming languages.

“strike a match”

The probabilistic grammar:

S - VP(0.7)|NP(0.3)

VP — V NP(0.6)|V(0.4)

NP — N(0.6)|N N(0.3)|N N N(0.1)
N — strike(0.4)|match(0.7)

V — strike(0.6)|match(0.3)

o’

It's called a probabilistic context-free grammar (PCFG)
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PCFG Example

The probabilistic grammar:

S — VP(0.7)|NP(0.3)

VP — V NP(0.6)[V(0.4)

NP — N(0.6)|N N(0.3)|N N N(0.1)
N — strike(0.4)|match(0.7)

V — strike(0.6)|match(0.3)
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How to Get Grammar Probabilities?

| made them up :)
Can we count them?
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How to Get Grammar Probabilities?

| made them up :)

Can we count them? No, they are ambiguous out in the wild.
First need a model of grammar, but problems:

e Grammars are biologically evolved

@ They are complex and rough

@ Neat rules all have exceptions
Solution?

@ Machine learning

But where's the data?

@ Need to pay people to build databases (e.g., Penn Tree Bank)
Can you think of a better solution?

@ Understand context first?
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Example Grammar

((S
(NP-SBJ (DT The) (NN move))
(VP (VBD followed)

(NP
(NP (DT a) (NN round))
(PP (IN of)
(NP
(NP (JJ similar) (NNS increases))
(PP (IN by)

(NP (JJ other) (NNS lenders)))
(PP (IN against)
(NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))

{0
(S-ADV
(NP-SBJ (-NONE- *))
(VP (VBG reflecting)
(NP
(NP (DT a) (VBG continuing) (NN decline))
(PP-LOC (IN in)
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Back to Disambiguation with Learned Grammar

%
S \Fﬂ!*‘“\"p
’___,.-—-""'ﬂ‘\_____‘h np _._-_-_-_'71—-_‘_-_-_-__1;;
NP VP PP\ T Py
| e | VED DT NN IN NP
PRP V NP saw the man wr’lth Dﬁf\'
| | e ;I? refeslcope
/ VBD NP PP
saw DT NN Il\' NP
| e S
man mrh DT NN

@ é a reiescope
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Lexicalized PCFG (LPCFG)

OMG! That's a long acronym.
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Lexicalized PCFG (LPCFG)

OMG! That's a long acronym.

Probabilities based on actual words:

P(VP — VNP NP|V = gave) = 0.8(common : gave mesomething)
P(VP — VNP NP|V =kiss) = 0.1(rare: kissmegoodbte)
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Lexicalized PCFG (LPCFG)

OMG! That's a long acronym.

Probabilities based on actual words:

P(VP — VNP NP|V = gave) = 0.8(common : gave mesomething)
P(VP — VNP NP|V =kiss) = 0.1(rare: kissmegoodbte)

But telescope example still hard to solve. But we can use:
@ Smoothing

@ Abstractions
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Putting Them Together: Parsing Trees with LPCFGs

So we have all the information now. How to parse language into trees?
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Putting Them Together: Parsing Trees with LPCFGs

So we have all the information now. How to parse language into trees?
Two options:

@ Start from words (bottom up); like starting from initial state
@ Start from sentence (top down); like starting from goal state

So it becomes like a regular tree search!
Note:

o Context-free grammars have advantage of parsing parts of the tree
independent of the rest. That is, we can divide and conquer.
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Machine Translation

Translate From: English - detected + LTS To: Turkish =

English Spanish French English - detected

The Penn Treebank Project annotates naturally-occuring text for linguistic x
structure Most notably, we produce skeletal parses showing rough syntactic and
semantic information -- a bank of linguistic trees
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Machine Translation

Translate From: English - detected + L To: Turkish -

English Spanish French English - detected

The Penn Treebank Project annotates naturally-occuring text for linguistic x
structure Most notably, we produce skeletal parses showing rough syntactic and
semantic information -- a bank of linguistic trees

English Spanish Turkish
Penn Tresbank Projesi dil yapisi icin dodal olarak clusan metin not alinir. Dil

agaclar bir banka - En énemlisi, biz iskelet kaba stzdizimsel ve semantik
bilgilerini gosteren aynistinr Uretmel<.

LD v

English Spanish Turkish

Penn Treebank Project annotates language to the structure of naturally occurring
text Language trees, a bank - Most importantly we produce skeletal parses
showing rough syntactic and semantic information
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Machine Translation Levels

Multi-level pyramid of machine translation (by Vauquois):
@ Word by word
@ Phrase
© Tree
Q@ Meaning (semantic)
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Machine Translation Levels

Multi-level pyramid of machine translation (by Vauquois):
@ Word by word
@ Phrase
© Tree
Q@ Meaning (semantic)

We'll concentrate on #2, but others are used on the field, too.
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Phrase Translation

P(elg) = PHa:}9) [T P(Elg:) P(a; — bi—1)
i

o v L]

Segmentation Translation Distortion
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Phrase Translation

P(elg) = P{@} o) [T P(&lg) P(a; — bi—1)
;

o v L]

Segmentation Translation Distortion

What else to improve?
o Calculate p(e) from LPCFG and check if translated sentence is likely.
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