
Don’t Break Things
Building and Deploying Web Applications

With Confidence

Brian DeShong
November 29, 2012

Who am I?
• Director, Back End Development,

CrowdTwist

• Formerly Director of Technology, Half Off
Depot

• Formerly Director of Technology, Schematic

• Technical Lead, Community Connect Inc.

• Systems Administrator in the past

My roles over the years

• Worked primarily in web development

• PHP (12 years!!!), MySQL, Oracle, Linux, Apache

• Highly-trafficked, scalable web applications

• Frequent speaker at PHP conferences,
Atlanta PHP user group

• iOS / Mac development for 2+ years

• FloodWatch for iOS

• Yahoo!, Half Off Depot

Today’s agenda

• Testing

• Types of tests

• Sample code and tests

• Code coverage

• Building testable software

• Deploying web applications

• Other pearls of wisdom

Testing

What is software testing?

“Software testing is an investigation conducted to
provide stakeholders with information about the
quality of the product or service under test. Software
testing can also provide an objective, independent
view of the software to allow the business to
appreciate and understand the risks of software
implementation.”

http://en.wikipedia.org/wiki/Software_testing

Why write tests?

• Tests increase confidence

• Testable code encourages good design

• Guards code from harm by others

• Instant gratification

• It’s cheaper to find a bug before it’s in
Production, than after

Types of Testing

Unit testing

• Unit: smallest testable part of an application

• A function / method or an entire class

• Run code in isolation

• Ensure that the building blocks of your
application function in isolation

Integration testing

• Verifies that components of software work
together as intended

• Expose defects in the integration between
classes

• Don’t interact with external resources

• Use Stubs / Mock objects

• Database, web services, etc.

System testing

• Actually tests all of the software and
external components together

• Ensure that you’ve met the requirements

• Able to interact with external resources

• Database

• Start transaction

• Rollback after each test method

Acceptance testing

• Suite of tests run against completed system

• Typically done by a human being

• Or automated (Selenium, Cucumber, etc.)

• Have requirements been met?

Unit test example

Classic Textbook Example

<?php
namespace Math;

class Doer
{
 function add($a, $b)
 {
 return $a + $b;
 }
}

Testing it...

<?php
require_once './bootstrap.php';
require_once './sample01.php';

class Sample01_TestCase extends PHPUnit_Framework_TestCase
{
 private $mathDoer;

 public function setUp()
 {
 $this->mathDoer = new \Math\Doer();
 }

 public function testAdd()
 {
 $this->assertEquals(
 4,
 $this->mathDoer->add(2, 2));
 }
}

And it passes

PHPUnit 3.7.9 by Sebastian Bergmann.

Starting test 'Sample01_TestCase::testAdd'.
.

Time: 0 seconds, Memory: 6.75Mb

OK (1 test, 1 assertion)

Some other developer thinks 2 + 2 = 5...

<?php
namespace Math;

class Doer
{
 function add($a, $b)
 {
 // 2 + 2 = 5. I swear.
 if ($a == 2 && $b == 2) {
 return 5;
 }

 return $a + $b;
 }
}

And it fails

PHPUnit 3.7.9 by Sebastian Bergmann.

F

Time: 0 seconds, Memory: 6.75Mb

There was 1 failure:

1) Sample02_TestCase::testAdd
Failed asserting that 5 matches expected 4.

/Users/brian/code/community/talks/emory_2012/code/sample02-test.php:18

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

Integration test
example

Car: simple object model

Sample run output

$ php ./sample03-run.php
engine: vroom, vroom
electrical: lights on
fuel injector: injecting 10
engine: getting gas, amount 10
fuel injector: injecting 20
engine: getting gas, amount 20
fuel injector: injecting 30
engine: getting gas, amount 30
hydraulic: applying force 50
hydraulic: applying force 75
hydraulic: stopped
fuel injector: injecting 10
engine: getting gas, amount 10
fuel injector: injecting 20
engine: getting gas, amount 20
hydraulic: applying force 20
hydraulic: applying force 40
hydraulic: applying force 60
hydraulic: applying force 80
hydraulic: stopped
electrical: lights off
engine: stop

Engine

<?php
class Engine
{
 public function start()
 {
 return "engine: vroom, vroom\n";
 }

 public function stop()
 {
 return "engine: stop\n";
 }

 public function gas($amount)
 {
 return "engine: getting gas, amount $amount\n";
 }
}

FuelInjector, HydraulicSystem, ElectricalSystem

<?php
class FuelInjector
{
 public function inject(Engine $engine, $amount)
 {
 return
 "fuel injector: injecting $amount\n" .
 $engine->gas($amount);
 }
}

class HydraulicSystem
{
 public function applyForce($force)
 {
 if ($force == 100) {
 return "hydraulic: stopped\n";
 }

 return "hydraulic: applying force $force\n";
 }
}

class ElectricalSystem
{
 public function lightsOn()
 {
 return "electrical: lights on\n";
 }

 public function lightsOff()
 {
 return "electrical: lights off\n";
 }
}

Car

<?php
class Car
{
 protected $engine;
 protected $fuelInjector;
 protected $hydraulic;
 protected $electrical;

 public function __construct(Engine $engine,
 FuelInjector $fuelInjector,
 HydraulicSystem $hydraulic,
 ElectricalSystem $electrical)
 {
 $this->engine = $engine;
 $this->fuelInjector = $fuelInjector;
 $this->hydraulic = $hydraulic;
 $this->electrical = $electrical;
 }

 public function start($key)
 {
 if ($key != 1234) {
 return false;
 }

 return $this->engine->start();
 }

 public function stop()
 {
 return $this->engine->stop();
 }

 public function applyGas($amount)
 {
 return $this->fuelInjector->inject($this->engine, $amount);
 }

 public function applyBrake($force)
 {
 return $this->hydraulic->applyForce($force);
 }

 public function lightsOn()
 {
 return $this->electrical->lightsOn();
 }

 public function lightsOff()
 {
 return $this->electrical->lightsOff();
 }
}

class CarTest extends PHPUnit_Framework_TestCase
{
 protected $mockEngine;
 protected $mockFuelInjector;
 protected $mockHydraulic;
 protected $mockElectrical;
 protected $car;

 public function setUp()
 {
 $this->mockEngine =
 $this->getMock(
 'Engine',
 array('start', 'stop'));

 $this->mockFuelInjector =
 $this->getMock(
 'FuelInjector',
 array('inject'));

 $this->mockHydraulic =
 $this->getMock(
 'HydraulicSystem',
 array('applyForce'));

 $this->mockElectrical =
 $this->getMock(
 'ElectricalSystem',
 array('lightsOn', 'lightsOff'));

 $this->car =
 new Car(
 $this->mockEngine,
 $this->mockFuelInjector,
 $this->mockHydraulic,
 $this->mockElectrical);
 }

 public function testStartWithWrongKeyReturnsFalse()
 {
 $this->assertFalse(
 $this->car->start(999));
 }

 public function testStartStartsEngine()
 {
 $this->mockEngine->expects($this->once())
 ->method('start');

 $this->car->start(1234);
 }

 public function testStopStopsEngine()
 {
 $this->mockEngine->expects($this->once())
 ->method('stop');

 $this->car->stop();
 }

 public function testApplyGasCallsToFuelInjector()
 {
 $this->mockFuelInjector->expects($this->once())
 ->method('inject')
 ->with($this->mockEngine, 50);

 $this->car->applyGas(50);
 }

 public function testApplyBrakeCallsToHydraulicSystem()
 {
 $this->mockHydraulic->expects($this->once())
 ->method('applyForce')
 ->with(25);

 $this->car->applyBrake(25);
 }

 public function testLightsOnCallsToElectricalSystem()
 {
 $this->mockElectrical->expects($this->once())
 ->method('lightsOn');

 $this->car->lightsOn();
 }

 public function testLightsOffCallsToElectricalSystem()
 {
 $this->mockElectrical->expects($this->once())
 ->method('lightsOff');

 $this->car->lightsOff();
 }
}

Code coverage

Executed lines

Non-executed lines

System test

• In the case of Car, we’d be using assertions
on the output

• “When I start car, engine says ‘vroom, vroom’”

• Was data inserted into database correctly?

• Did I receive a response from third-party
API request?

100% code coverage !=
robust tests

• Just because you execute all of your lines,
that doesn’t mean your tests are robust

• If another developer touches your code, a
test(s) should fail, forcing them to account
for the changes

• Ability to run passing tests gives developers
confidence in their changes

Continuous integration

• Basically, run your entire test suite on every
commit to code repository

• Generate code coverage report, LOC
stats, etc.

• Notify team on build failures and the
commit that caused the failure

• Group tests together (unit, database, etc.)

• Jenkins, Travis CI, Bamboo

Test-Driven Development

• Write your tests first

• They all fail at first

• When they all pass, you’re done

• Forces you to think about design first

• You’re thinking about how the components are
used upfront

• Then you’ve reached a design you’re happy with

• Then you implement it!

This. Book.

Writing Testable
Code

Single Responsibility Principle

• Every class should have a single
responsibility

• Question: “what does this class do?”

• Answer does not contain “and” or “or”

• Forces you to loosely couple classes

• Takes a lot of getting used to at first

Dependency Injection

• Car: swap out the engine by passing in a
different instance

• Code to interfaces, not concrete classes

• You can only instantiate value objects

• You never instantiate a service object

• You inject it, or inject a factory that can create it

Deploying Web
Applications

Rules of the road

• Use a Source Code Management tool

• This is non-negotiable!

• Git > Subversion, but use something

• Keep everything under version control

• Practice common repository management

• “master”, branches, and tags

“A successful Git branching model”

http://nvie.com/posts/a-successful-git-branching-model/

Classic web application infrastructure

cache01 cache02

Load balancer

db01
(master)

db02
(slave)

web01 web02 web03 web04 web05 web06 batch01 batch02

Internet

Deploying web application code

• Deploying should be a one-step process

• Code always sourced from SCM repository

• Be able to rollback quickly

• Always deploy (or at least tag) a numbered
release

• Apply database changes

• Don’t take your web app down (if you can
help it)

Web server config and filesystem

<VirtualHost *:80>
 ServerName www.example.org
 DocumentRoot /home/web/site/current/public_html
</VirtualHost>

$ pwd
/home/web/site
web@dev:~/site$ ls -al
total 28
drwxrwxr-x 7 web web 4096 2012-11-24 21:55 .
drwxr-xr-x 3 web web 4096 2012-11-24 21:52 ..
drwxrwxr-x 2 web web 4096 2012-11-24 21:55 1.0.0
drwxrwxr-x 2 web web 4096 2012-11-24 21:55 1.0.1
drwxrwxr-x 2 web web 4096 2012-11-24 21:55 1.0.2
drwxrwxr-x 2 web web 4096 2012-11-24 21:55 1.1.0
drwxrwxr-x 5 web web 4096 2012-11-24 21:56 1.1.1
lrwxrwxrwx 1 web web 5 2012-11-24 21:55 current -> 1.1.1

Deployment tools

• Build your own

• Push/pull tarball from Amazon S3 service

• rsync’s code to local disk

• Capistrano

• Written in Ruby

• Performs “tasks” on “roles” of servers

• Ant, Phing, Deployinator (Etsy)

Deploying database objects

• Your database always moves forward in
time

• “up” and “down” changes

• up_X.sql -- creates and modifies objects

• down_X.sql -- undoes the changes in “up”

• Each change has a version number

• Rails migrations, Doctrine

Sample database up/down pair
up_1353811475.sql

create table user (
 id integer unsigned not null,
 username varchar(20) not null,
 password_hash varchar(100) not null,
 created datetime,
 last_updated datetime,
 last_login datetime,
 constraint user_pk primary key (id),
 constraint user_username_uk unique key (username));

insert into schema_version (
 num)
values (
 1353811475);

down_1353811475.sql

drop table user;

delete schema_version
 where num = 1353811475);

Common gotchas

• Rotate your log files

• Centralize them, too!

• Important to write robust, defensive code

• Be able to monitor everything

• Munin, statsd, Graphite, etc.

• Design for failure

• Have at least two of everything

Other pearls of
wisdom

Coding standards

• Coding standards are insanely
important

• Ensures that all developers on a team
write:

• Code that looks the same

• Is maintainable by anyone on the team

• These are not optional. You follow them.
Period.

Testing and QA in the real world

• When time and budgets are tight:

• It’s really easy to skimp on writing tests for
your code

• You just want to meet your deadline

• Acceptance testing of a release can be shorter
than normal

• Meeting client deadline > 100% code
coverage

Understanding the sysadmin side

• Understanding systems administration has
been a huge differentiator for me

• The best devs I know understand this area well

• When you write code, you think about what it
does on a server

• Deeper understanding and respect for writing
efficient code

• So much easier now due to virtualization

Speak! Write!

• Many software development conferences

• You owe it to the community to share your
knowledge

• Adapt your work into presentations

• Write!

• My former (and current) boss: “Publish or
perish”

Books!

References

• Code As Craft

• http://codeascraft.etsy.com/

• PHPUnit

• https://github.com/sebastianbergmann/phpunit/

• Grumpy Programmer’s Guide to Building
Testable Applications in PHP

• http://www.grumpy-testing.com/

Thanks!

brian@deshong.net

http://www.deshong.net/

brian@crowdtwist.com

http://www.crowdtwist.com/

http://www.deshong.net
http://www.deshong.net
mailto:bdeshong@yahoo-inc.com
mailto:bdeshong@yahoo-inc.com
http://www.yahoo.com
http://www.yahoo.com

