
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 1

Chapter 1

  Software & Software Engineering

Slide Set to accompany  
Software Engineering: A Practitionerʼs Approach, 7/e

by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 2

What is Software?

Software is: (1) instructions (computer programs)
that when executed provide desired features,
function, and performance; (2) data structures
that enable the programs to adequately manipulate
information and (3) documentation that describes
the operation and use of the programs.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 3

What is Software?

  Software is developed or engineered, it is not

manufactured in the classical sense.

  Software doesn't "wear out."

  Although the industry is moving toward component-

based construction, most software continues to be
custom-built.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 4

Wear vs. Deterioration

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 5

Software Applications

  system software

  application software

  engineering/scientific

software

  embedded software

  product-line software

  WebApps (Web

applications)

  AI software

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 6

Software—New Categories

  Open world computing—pervasive, distributed

computing
  Ubiquitous computing—wireless networks

  Netsourcing—the Web as a computing engine

  Open source—”free” source code open to the

computing community (a blessing, but also a potential
curse!)

  Also … (see Chapter 31)

  Data mining

  Grid computing

  Cognitive machines

  Software for nanotechnologies

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 7

Legacy Software

  software must be adapted to meet the needs
of new computing environments or
technology.

  software must be enhanced to implement new
business requirements.

  software must be extended to make it
interoperable with other more modern
systems or databases.

  software must be re-architected to make it
viable within a network environment.

Why must it change?

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 8

Characteristics of WebApps - I

  Network intensiveness. A WebApp resides on a network and must

serve the needs of a diverse community of clients.
  Concurrency. A large number of users may access the WebApp at

one time.
  Unpredictable load. The number of users of the WebApp may vary by

orders of magnitude from day to day.
  Performance. If a WebApp user must wait too long (for access, for

server-side processing, for client-side formatting and display), he or
she may decide to go elsewhere.

  Availability. Although expectation of 100 percent availability is
unreasonable, users of popular WebApps often demand access on a
“24/7/365” basis.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 9

Characteristics of WebApps - II

  Data driven. The primary function of many WebApps is to use

hypermedia to present text, graphics, audio, and video content to
the end-user.

  Content sensitive. The quality and aesthetic nature of content
remains an important determinant of the quality of a WebApp.

  Continuous evolution. Unlike conventional application software
that evolves over a series of planned, chronologically-spaced
releases, Web applications evolve continuously.

  Immediacy. Although immediacy—the compelling need to get
software to market quickly—is a characteristic of many application
domains, WebApps often exhibit a time to market that can be a
matter of a few days or weeks.

  Security. Because WebApps are available via network access, it
is difficult, if not impossible, to limit the population of end-users
who may access the application.

  Aesthetics. An undeniable part of the appeal of a WebApp is its
look and feel.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 10

Software Engineering

  Some realities:

  a concerted effort should be made to understand the problem

before a software solution is developed

  design becomes a pivotal activity

  software should exhibit high quality

  software should be maintainable

  The seminal definition:

  [Software engineering is] the establishment and use of sound

engineering principles in order to obtain economically software
that is reliable and works efficiently on real machines.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 11

Software Engineering

  The IEEE definition:

  Software Engineering: (1) The application of a systematic,

disciplined, quantifiable approach to the development, operation,
and maintenance of software; that is, the application of
engineering to software. (2) The study of approaches as in (1).

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 12

A Layered Technology

Software Engineering

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 13

A Process Framework

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 14

Framework Activities

  Communication

  Planning

  Modeling

  Analysis of requirements

  Design

  Construction

  Code generation

  Testing

  Deployment

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 15

Umbrella Activities

 Software project management

 Formal technical reviews

 Software quality assurance

 Software configuration management

 Work product preparation and production

 Reusability management

 Measurement

 Risk management

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 16

Adapting a Process Model

  the overall flow of activities, actions, and tasks and the
interdependencies among them

  the degree to which actions and tasks are defined within
each framework activity

  the degree to which work products are identified and
required

  the manner which quality assurance activities are applied

  the manner in which project tracking and control activities

are applied

  the overall degree of detail and rigor with which the

process is described

  the degree to which the customer and other stakeholders

are involved with the project

  the level of autonomy given to the software team

  the degree to which team organization and roles are

prescribed

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 17

The Essence of Practice

  Polya suggests:

1.
Understand the problem (communication and analysis).

2.
Plan a solution (modeling and software design).

3.
Carry out the plan (code generation).

4.
Examine the result for accuracy (testing and quality assurance).

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 18

Understand the Problem

  Who has a stake in the solution to the problem? That is,
who are the stakeholders?

  What are the unknowns? What data, functions, and
features are required to properly solve the problem?

  Can the problem be compartmentalized? Is it possible to
represent smaller problems that may be easier to
understand?

  Can the problem be represented graphically? Can an
analysis model be created?

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 19

Plan the Solution

  Have you seen similar problems before? Are there patterns that are
recognizable in a potential solution? Is there existing software
that implements the data, functions, and features that are
required?

  Has a similar problem been solved? If so, are elements of the
solution reusable?

  Can subproblems be defined? If so, are solutions readily apparent
for the subproblems?

  Can you represent a solution in a manner that leads to effective
implementation? Can a design model be created?

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 20

Carry Out the Plan

  Does the solution conform to the plan? Is source code
traceable to the design model?

  Is each component part of the solution provably correct?
Has the design and code been reviewed, or better,
have correctness proofs been applied to algorithm?

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 21

Examine the Result

  Is it possible to test each component part of the solution?
Has a reasonable testing strategy been implemented?

  Does the solution produce results that conform to the data,
functions, and features that are required? Has the
software been validated against all stakeholder
requirements?

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 22

Hookerʼs General Principles

  1: The Reason It All Exists

  2: KISS (Keep It Simple, Stupid!)

  3: Maintain the Vision

  4: What You Produce, Others Will Consume

  5: Be Open to the Future

  6: Plan Ahead for Reuse

  7: Think!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 23

Software Myths

  Affect managers, customers (and

other non-technical stakeholders)
and practitioners

  Are believable because they often
have elements of truth,

but …

  Invariably lead to bad decisions,

therefore …

  Insist on reality as you navigate your

way through software engineering

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
 24

How It all Starts

  SafeHome:

  Every software project is precipitated by some business

need—

•  the need to correct a defect in an existing application;

•  the need to the need to adapt a ‘legacy system’ to a changing

business environment;

•  the need to extend the functions and features of an existing

application, or

•  the need to create a new product, service, or system.

