Chapters 5-6-7

Requirements Engineering Highlights

CS-584/Fall 2009/Emory U



Chapter 05:
Quality Function Deployment

Function deployment determines the “value” (as perceived by
the customer) of each function required of the system

Information deployment identifies data objects and events
Task deployment examines the behavior of the system

Value analysis determines the relative priority of
requirements



Planning Principles
(from Chapter 04)

Principle #1. Understand the scope of the project. It's impossible to
use a roadmap if you don’t know where you're going. Scope
provides the software team with a destination.

Principle #2. Involve the customer in the planning activity. The
customer defines priorities and establishes project constraints.
Principle #3. Recognize that planning is iterative. A project plan is
never engraved in stone. As work begins, it very likely that things
will change.

Principle #4. Estimate based on what you know. The intent of
estimation is to provide an indication of effort, cost, and task
duration, based on the team’s current understanding of the work to
be done.



Planning Principles
(from Chapter 04)

Principle #5. Consider risk as you define the plan. 1f you have
identified risks that have high impact and high probability, contingency
planning is necessary.

Principle #6. Be realistic. People don’t work 100 percent of every day.
Principle #7. Adjust granularity as you define the plan. Granularity

refers to the level of detail that is introduced as a project plan is
developed.

Principle #8. Define how you intend to ensure quality. The plan should
identify how the software team intends to ensure quality.

Principle #9. Describe how you intend to accommodate change. Even
the best planning can be obviated by uncontrolled change.

Principle #10. Track the plan frequently and make adjustments as
required. Software projects fall behind schedule one day at a time.



Requirements vs Expectations

Customers “expect” the product to do certain things
— Some are clearly stated expectations
— Others are assumed but not stated
— Figuring out the assumptions is where the real challenge lies

Expectations lead to requirements specification

— Inputs + action on inputs = outputs

— Each has consequences for design & implementation

— Some requirements may need to be re-thought, re-defined, or postponed
This first “negotiation” with the customer must be managed with
an eye toward realistic production

— Get the requirements

— Understand the implications

— Assess feasibility

— Then return with a proposal (release plan)

— Validate plan



Chapter 05: UML & Use-Cases

UML (Unified Modeling Language) used to model many kinds of systems
Based on concept of user interacting with system — hardware and software
Use Case: A collection of user scenarios that describe the thread of usage of a system

Each scenario is described from the point-of-view of an “actor”—a person or device that
interacts with the software in some way
Each scenario answers the following questions:
— Who is the primary actor, the secondary actor (s)?
— What are the actor’s goals?
— What preconditions should exist before the story begins?
— What main tasks or functions are performed by the actor?
— What extensions might be considered as the story is described?
— What variations in the actor’s interaction are possible?
— What system information will the actor acquire, produce, or change?
— Will the actor have to inform the system about changes in the external environment?
— What information does the actor desire from the system?
— Does the actor wish to be informed about unexpected changes?



Chapter 05: UML Use-Case Diagram

Arms/disarms

system

™~/ Accesses system sensors

via Internet

7\

homeowner

Responds to
alarm event

Encounters an
error condition

N

Reconfigures sensors
and related
system features

system
administrator




Chapter 05: UML Class Diagram

From the SafeHome system ...

Sensor

name/id

type

location

area
characteristics

identify()
enable()
disable()
reconfigure()




Chapter 05: UML State Diagram

Reading
Commands T

System status = “ready”
Display msg = “enter cmd”

Display status = steady \

Entry/subsystems ready
Do: poll user input panel

Do: read user input \

Do: interpret user input State activities

State name

State variables




Chapter 06: Modeling the Requirements

Scenario-based models

Scenario- Class
based models
Data models models eq

class diagrams
collaboration
diagrams

e.qg.,
use cases
user stories

Class-oriented models

Flow-oriented models

software
requirements

Behavioral models

Flow

Behavioral

models Models
e.g., e.q.,
state diagrams DFDs
data models

sequence
diagrams

DFD: Data Flow Diagram

CS-584/Fall 2009/Emory U

10



Chapter 06: UML Activity & Swimlane Diagrams
Activity Diagram Swimlane Diagram

homeowner
enter password
and user ID
enter password
and user ID
invalid passwords/ID T

valid passwords/ID
select major function

other functions gl
may also be

input tries remain selected
select surveillance

select a specific camera

invalid
passwords/ID

valid passwords/ID

prompt for reentry

prompt for reentry

input tries
remain

select major function

other functions
may also be
selected

no input
tries remain

no input
tries remain

select surveillance

thumbnail views

| ifi
Q select specific s select camera icon

select a specific camera

thumbnail views

select specific X
. select camera icon
camera - thumbnails

amera - thumbnail

generate video
output
view camera output ﬁ prompt for
i another view

n labelled window /
exit this

function

view camera output
in labelled window

see
another
camera

prompt for
another view

exit this function see another camera




Chapter 06: Data Modeling

examines data objects independently of processing
focuses attention on the data domain
creates a model at the customer’s level of abstraction

indicates how data objects relate to one another



Chapter 06: What is a Data Object?

a representation of almost any composite information that must
be understood by software.

— composite information —something that has a number of different

properties or attributes

can be an external entity (e.g., anything that produces or
consumes information), a thing (e.g., a report or a display), an
occurrence (e.g., a telephone call) or event (e.g., an alarm), a role
(e.g., salesperson), an organizational unit (e.g., accounting
department), a place (e.g., a warehouse), or a structure (e.g., a
file).
The description of the data object incorporates the data object
and all of its attributes.

A data object encapsulates data only—there is no reference
within a data object to operations that act on the data.



Chapter 06: Data Objects and Attributes

A data object contains a set of attributes that act as an aspect,
quality, characteristic, or descriptor of the object

object: automobile

attributes:
make
model
body type
price
options code




Chapter 06: What is a Relationship?

Data objects are connected to one another in different
ways.

— A connection is established between person and car because
the two objects are related.

« A person owns a car
» A person is insured to drive a car

The relationships owns and insured to drive define the
relevant connections between person and car.

Several instances of a relationship can exist
Obijects can be related in many different ways



Chapter 06: ERD Notation
(Entity-Relationship Diagram)

One common form:

) (0, m)
object ) relationship

—

(1,1)

Another common form:

object . >0 relationship object

[N




Chapter 06: Building an ERD

Level 1—model all data objects (entities) and their
“connections” to one another

Level 2—model all entities and relationships

Level 3—model all entities, relationships, and the
attributes that provide further depth



Chapter 06: An ERD Example

request
Customer (1.1) (1,m) for service

(1,1)

standard (1,n) | work
task table generates order
(1,1) (1,1)

selected
from

work (1,w) /\
tasks consists
\V
L) N\
materials \"Sts/




Chapter 06: Class-Based Modeling

Class-based modeling represents:

objects that the system will manipulate

operations (also called methods or services) that will be applied
to the objects to effect the manipulation

relationships (some hierarchical) between the objects
collaborations that occur between the classes that are defined.

The elements of a class-based model include classes and
objects, attributes, operations, CRC models,
collaboration diagrams and packages.



Chapter 06: Class-Responsibility-Collaborator
Modeling (CRC)

Class-responsibility-collaborator (CRC)
modeling [Wir90] provides a simple
means for identifying and organizing

the classes that are relevant to system

Clace:

or product requirements. Ambler =
[AmDb95] describes CRC modeling in

L{ Class: FloorPlan

the fOllOWil’lg way: :_ Description:
— A CRC model is really a collection of ﬁ;‘g:’:iﬁ'gﬁ; — Collaborator:
Standard index CaI'dS that represent manages floor plan positioning
classes. The cards are divided into scales floor plan for display
three sections. Along the top of the card scales floor plan for display

you write the name Of the ClaSS In the incorporates walls, doors and windows Wall

body of the card you list the class
responsibilities on the left and the u
collaborators on the right. —

shows position of video cameras Camera

Other classes collaborating



Chapter 07: Modeling Strategies

structured analysis considers data and the processes that transform
the data as separate entities.

— Data objects are modeled in a way that defines their attributes and
relationships.

— Processes that manipulate data objects are modeled in a manner that
shows how they transform data as data objects flow through the system.

object-oriented analysis focuses on
— the definition of classes and

— the manner in which they collaborate with one another to effect
customer requirements.

Data Flow Diagrams

— Represents how data objects are transformed as they move through the
system



Chapter 07: Flow Modeling Notation

. external entity

process

/ data flow

data store




Chapter 07: Data Flow Diagram Example

processing
request requested
\ - video
digital signal

video —
video /
source . NTSC
video signal

processor




Chapter 07: Requirements Modeling for WebApps

Content Analysis. The full spectrum of content to be provided by
the WebApp is identified, including text, graphics and images,
video, and audio data. Data modeling can be used to identify
and describe each of the data objects.

Interaction Analysis. The manner in which the user interacts
with the WebApp is described in detail. Use-cases can be
developed to provide detailed descriptions of this interaction.

Functional Analysis. The usage scenarios (use-cases) created as
part of interaction analysis define the operations that will be
applied to WebApp content and imply other processing
functions. All operations and functions are described in detail.

Configuration Analysis. The environment and infrastructure in
which the WebApp resides are described in detail.



The Configuration Model

e Server-side

— Server hardware and operating system environment must be specified
— Interoperability considerations on the server-side must be considered

— Appropriate interfaces, communication protocols and related
collaborative information must be specified

* C(Client-side
— Browser configuration issues must be identified
— Testing requirements should be defined



Navigation Modeling-I

Should certain elements be easier to reach (require fewer navigation
steps) than others? What is the priority for presentation?

Should certain elements be emphasized to force users to navigate in their
direction?
How should navigation errors be handled?

Should navigation to related groups of elements be given priority over
navigation to a specific element.

Should navigation be accomplished via links, via search-based access, or by
some other means?

Should certain elements be presented to users based on the context of
previous navigation actions?

Should a navigation log be maintained for users?



Navigation Modeling-I|

Should a full navigation map or menu (as opposed to a single “back” link or
directed pointer) be available at every point in a user’s interaction?

Should navigation design be driven by the most commonly expected user
behaviors or by the perceived importance of the defined WebApp elements?

Can a user “store” his previous navigation through the WebApp to expedite future
usage?

For which user category should optimal navigation be designed?

How should links external to the WebApp be handled? overlaying the existing
browser window? as a new browser window? as a separate frame?



Fact/Fallacy Tidbit

* Fact 26

The list of “derived requirements” can be 50x longer than the list of original
requirements

e Discussion

— Requirements inform the design; the design informs the solution; the solution creates
new requirements

— Complexity may increase as well
— Requirements traceability is affected

* Traceability involves mapping a customer requirement to each part of the design/code/test/
documentation

* Sometimes used for code analysis — identifying dangling code, for example (i.e., code that no
longer meets a requirement)

* Design “consequences” (implicit requirements) aren’t tied directly to an original customer
requirement, so mapping is unclear at best

* Each phase of the project and addition of further implicit requirements adds to the traceability
problem; no just a simple linked-list problem but linked-lists of linked-lists — extremely complex

From Robert Glass, “Facts & Fallacies of Software Engineering”



