
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 1

Chapter 5
  Understanding Requirements

Slide Set to accompany  
Software Engineering: A Practitionerʼs Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 2

Requirements Engineering-I
  Inception—ask a set of questions that establish …

  basic understanding of the problem
  the people who want a solution
  the nature of the solution that is desired, and
  the effectiveness of preliminary communication and collaboration

between the customer and the developer
  Elicitation—elicit requirements from all stakeholders
  Elaboration—create an analysis model that identifies data,

function and behavioral requirements
  Negotiation—agree on a deliverable system that is realistic for

developers and customers

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 3

Requirements Engineering-II
  Specification—can be any one (or more) of the following:

  A written document
  A set of models
  A formal mathematical
  A collection of user scenarios (use-cases)
  A prototype

  Validation—a review mechanism that looks for
  errors in content or interpretation
  areas where clarification may be required
  missing information
  inconsistencies (a major problem when large products or systems

are engineered)
  conflicting or unrealistic (unachievable) requirements.

  Requirements management

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 4

Inception
  Identify stakeholders

  “who else do you think I should talk to?”
  Recognize multiple points of view
  Work toward collaboration
  The first questions

  Who is behind the request for this work?
  Who will use the solution?
  What will be the economic benefit of a successful

solution
  Is there another source for the solution that you

need?

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 5

Eliciting Requirements
  meetings are conducted and attended by both software

engineers and customers
  rules for preparation and participation are established
  an agenda is suggested
  a "facilitator" (can be a customer, a developer, or an outsider)

controls the meeting
  a "definition mechanism" (can be work sheets, flip charts, or wall

stickers or an electronic bulletin board, chat room or virtual
forum) is used

  the goal is
  to identify the problem
  propose elements of the solution
  negotiate different approaches, and
  specify a preliminary set of solution requirements

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 6

Eliciting Requirements

Use QFD to
prioritize

requirements

informally
prioritize

requirements

formal prioritization?

Create Use-cases

yes no
Elicit r equirements

write scenario

define actors

complete template

draw use-case
diagram

Conduct FAST
meetings

Make lists of
functions, classes

Make lists of
constraints, etc.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 7

Quality Function Deployment
  Function deployment determines the

“value” (as perceived by the customer) of each
function required of the system

  Information deployment identifies data objects
and events

  Task deployment examines the behavior of the
system

  Value analysis determines the relative priority
of requirements

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 8

Elicitation Work Products
  a statement of need and feasibility.
  a bounded statement of scope for the system or product.
  a list of customers, users, and other stakeholders who

participated in requirements elicitation
  a description of the systemʼs technical environment.
  a list of requirements (preferably organized by function)

and the domain constraints that apply to each.
  a set of usage scenarios that provide insight into the use of

the system or product under different operating conditions.
  any prototypes developed to better define requirements.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 9

Building the Analysis Model
  Elements of the analysis model

  Scenario-based elements
•  Functional—processing narratives for software functions
•  Use-case—descriptions of the interaction between an

“actor” and the system
  Class-based elements

•  Implied by scenarios
  Behavioral elements

•  State diagram
  Flow-oriented elements

•  Data flow diagram

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 10

Use-Cases
  A collection of user scenarios that describe the thread of usage of a

system
  Each scenario is described from the point-of-view of an “actor”—a

person or device that interacts with the software in some way
  Each scenario answers the following questions:

  Who is the primary actor, the secondary actor (s)?
  What are the actorʼs goals?
  What preconditions should exist before the story begins?
  What main tasks or functions are performed by the actor?
  What extensions might be considered as the story is described?
  What variations in the actorʼs interaction are possible?
  What system information will the actor acquire, produce, or change?
  Will the actor have to inform the system about changes in the external

environment?
  What information does the actor desire from the system?
  Does the actor wish to be informed about unexpected changes?

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 11

Use-Case Diagram

homeowner

Arms/disarms
system

Accesses system
via Internet

Reconfigures sensors
and related

system features

Responds to
alarm event

Encounters an
error condition

system
administrator

sensors

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 12

Class Diagram

Sensor

name/id
type
location
area
characteristics

identify()
enable()
disable()
reconfigure()

From the SafeHome system …

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 13

State Diagram
Reading

Commands
System status = “ready”
Display msg = “enter cmd”
Display status = steady

Entry/subsystems ready
Do: poll user input panel
Do: read user input
Do: interpret user input

State name

State variables

State activities

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 14

Analysis Patterns

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 15

Negotiating Requirements
  Identify the key stakeholders

  These are the people who will be involved in the
negotiation

  Determine each of the stakeholders “win
conditions”
  Win conditions are not always obvious

  Negotiate
  Work toward a set of requirements that lead to “win-

win”

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 16

Validating Requirements - I
  Is each requirement consistent with the overall objective for the

system/product?
  Have all requirements been specified at the proper level of

abstraction? That is, do some requirements provide a level of
technical detail that is inappropriate at this stage?

  Is the requirement really necessary or does it represent an add-
on feature that may not be essential to the objective of the
system?

  Is each requirement bounded and unambiguous?
  Does each requirement have attribution? That is, is a source

(generally, a specific individual) noted for each requirement?
  Do any requirements conflict with other requirements?

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 17

Validating Requirements - II
  Is each requirement achievable in the technical environment

that will house the system or product?
  Is each requirement testable, once implemented?
  Does the requirements model properly reflect the information,

function and behavior of the system to be built.
  Has the requirements model been “partitioned” in a way that

exposes progressively more detailed information about the
system.

  Have requirements patterns been used to simplify the
requirements model. Have all patterns been properly
validated? Are all patterns consistent with customer
requirements?

