
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 1

Chapter 7
  Requirements Modeling: Flow, Behavior,

Patterns, and WebApps
Slide Set to accompany  
Software Engineering: A Practitionerʼs Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 2

Requirements Modeling Strategies
  One view of requirements modeling, called structured

analysis, considers data and the processes that transform
the data as separate entities.
  Data objects are modeled in a way that defines their

attributes and relationships.
  Processes that manipulate data objects are modeled in a

manner that shows how they transform data as data
objects flow through the system.

  A second approach to analysis modeled, called object-
oriented analysis, focuses on
  the definition of classes and
  the manner in which they collaborate with one another to

effect customer requirements.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 3

Flow-Oriented Modeling

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 4

The Flow Model

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 5

Flow Modeling Notation

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 6

External Entity

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 7

Process

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 8

Data Flow

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 9

Data Stores

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 10

Data Flow Diagramming: Guidelines
  all icons must be labeled with meaningful

names
  the DFD evolves through a number of levels

of detail
  always begin with a context level diagram

(also called level 0)
  always show external entities at level 0
  always label data flow arrows
  do not represent procedural logic

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 11

Constructing a DFD—I
  review user scenarios and/or the data

model to isolate data objects and use a
grammatical parse to determine
“operations”

  determine external entities (producers
and consumers of data)

  create a level 0 DFD

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 12

Level 0 DFD Example

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 13

Constructing a DFD—II
  write a narrative describing the transform
  parse to determine next level transforms
  “balance” the flow to maintain data flow

continuity
  develop a level 1 DFD
  use a 1:5 (approx.) expansion ratio

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 14

The Data Flow Hierarchy

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 15

Flow Modeling Notes
  each bubble is refined until it does just

one thing
  the expansion ratio decreases as the

number of levels increase
  most systems require between 3 and 7

levels for an adequate flow model
  a single data flow item (arrow) may be

expanded as levels increase (data
dictionary provides information)

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 16

Process Specification (PSPEC)

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 17

DFDs: A Look Ahead

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 18

Control Flow Modeling
  Represents “events” and the processes that

manage events
  An “event” is a Boolean condition that can be

ascertained by:
•  listing all sensors that are "read" by the software.
•  listing all interrupt conditions.
•  listing all "switches" that are actuated by an operator.
•  listing all data conditions.
•  recalling the noun/verb parse that was applied to the

processing narrative, review all "control items" as
possible CSPEC inputs/outputs.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 19

Control Specification (CSPEC)

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 20

Behavioral Modeling
  The behavioral model indicates how software will

respond to external events or stimuli. To create the
model, the analyst must perform the following steps:

•  Evaluate all use-cases to fully understand the sequence of
interaction within the system.

•  Identify events that drive the interaction sequence and
understand how these events relate to specific objects.

•  Create a sequence for each use-case.
•  Build a state diagram for the system.
•  Review the behavioral model to verify accuracy and

consistency.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 21

State Representations
  In the context of behavioral modeling, two different

characterizations of states must be considered:
  the state of each class as the system performs its function

and
  the state of the system as observed from the outside as the

system performs its function
  The state of a class takes on both passive and active

characteristics [CHA93].
  A passive state is simply the current status of all of an

objectʼs attributes.
  The active state of an object indicates the current status of

the object as it undergoes a continuing transformation or
processing.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 22

State Diagram for the ControlPanel Class

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 23

The States of a System
  state—a set of observable circum-

stances that characterizes the behavior
of a system at a given time

  state transition—the movement from one
state to another

  event—an occurrence that causes the
system to exhibit some predictable form
of behavior

  action—process that occurs as a
consequence of making a transition

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 24

Behavioral Modeling
  make a list of the different states of a system

(How does the system behave?)
  indicate how the system makes a transition

from one state to another (How does the
system change state?)
  indicate event
  indicate action

  draw a state diagram or a sequence diagram

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 25

Sequence Diagram

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 26

Writing the Software Specification

Everyone knew exactly
what had to be done
until someone wrote it
down!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 27

Patterns for Requirements Modeling
  Software patterns are a mechanism for capturing domain

knowledge in a way that allows it to be reapplied when
a new problem is encountered
  domain knowledge can be applied to a new problem

within the same application domain
  the domain knowledge captured by a pattern can be

applied by analogy to a completely different application
domain.

  The original author of an analysis pattern does not
“create” the pattern, but rather, discovers it as
requirements engineering work is being conducted.

  Once the pattern has been discovered, it is documented

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 28

Discovering Analysis Patterns
  The most basic element in the description of a

requirements model is the use case.
  A coherent set of use cases may serve as the

basis for discovering one or more analysis
patterns.

  A semantic analysis pattern (SAP) “is a pattern that
describes a small set of coherent use cases that
together describe a basic generic
application.” [Fer00]

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 29

An Example
  Consider the following preliminary use case for software

required to control and monitor a real-view camera and
proximity sensor for an automobile:

Use case: Monitor reverse motion
Description: When the vehicle is placed in reverse gear, the
control software enables a video feed from a rear-placed
video camera to the dashboard display. The control software
superimposes a variety of distance and orientation lines on
the dashboard display so that the vehicle operator can
maintain orientation as the vehicle moves in reverse. The
control software also monitors a proximity sensor to
determine whether an object is inside 10 feet of the rear of
the vehicle. It will automatically break the vehicle if the
proximity sensor indicates an object within 3 feet of the rear

of the vehicle.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 30

An Example
  This use case implies a variety of functionality that

would be refined and elaborated (into a coherent set of
use cases) during requirements gathering and modeling.

  Regardless of how much elaboration is accomplished,
the use case(s) suggest(s) a simple, yet widely applicable
SAP—the software-based monitoring and control of
sensors and actuators in a physical system.

  In this case, the “sensors” provide information about
proximity and video information. The “actuator” is the
breaking system of the vehicle (invoked if an object is
very close to the vehicle.

  But in a more general case, a widely applicable pattern is
discovered --> Actuator-Sensor

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 31

Actuator-Sensor Pattern—I
Pattern Name: Actuator-Sensor
Intent: Specify various kinds of sensors and actuators in an embedded system.
Motivation: Embedded systems usually have various kinds of sensors and actuators. These sensors
and actuators are all either directly or indirectly connected to a control unit. Although many of the
sensors and actuators look quite different, their behavior is similar enough to structure them into a
pattern. The pattern shows how to specify the sensors and actuators for a system, including attributes
and operations. The Actuator-Sensor pattern uses a pull mechanism (explicit request for information)
for PassiveSensors and a push mechanism (broadcast of information) for the ActiveSensors.

Constraints:
Each passive sensor must have some method to read sensor input and attributes that represent the
sensor value.
Each active sensor must have capabilities to broadcast update messages when its value changes.
Each active sensor should send a life tick, a status message issued within a specified time frame, to
detect malfunctions.
Each actuator must have some method to invoke the appropriate response determined by the
ComputingComponent.
Each sensor and actuator should have a function implemented to check its own operation state.
Each sensor and actuator should be able to test the validity of the values received or sent and set its
operation state if the values are outside of the specifications.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 32

Actuator-Sensor Pattern—II
Applicability: Useful in any system in which multiple sensors and actuators are present.
Structure: A UML class diagram for the Actuator-Sensor Pattern is shown in Figure 7.8.
Actuator, PassiveSensor and ActiveSensor are abstract classes and denoted in italics. There are
four different types of sensors and actuators in this pattern. The Boolean, integer, and real
classes represent the most common types of sensors and actuators. The complex classes are
sensors or actuators that use values that cannot be easily represented in terms of primitive data
types, such as a radar device. Nonetheless, these devices should still inherit the interface from
the abstract classes since they should have basic functionalities such as querying the operation

states.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 33

Actuator-Sensor Pattern—III
Behavior: Figure 7.9 presents a UML sequence diagram for an example of the Actuator-Sensor
Pattern as it might be applied for the SafeHome function that controls the positioning (e.g., pan,
zoom) of a security camera. Here, the ControlPanel queries a sensor (a passive position sensor)
and an actuator (pan control) to check the operation state for diagnostic purposes before reading or
setting a value. The messages Set Physical Value and Get Physical Value are not messages between
objects. Instead, they describe the interaction between the physical devices of the system and their
software counterparts. In the lower part of the diagram, below the horizontal line, the PositionSensor
reports that the operation state is zero. The ComputingComponent then sends the error code for a
position sensor failure to the FaultHandler that will decide how this error affects the system and
what actions are required. it gets the data from the sensors and computes the required response for
the actuators.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 34

Actuator-Sensor Pattern—III
  See SEPA, 7/e for additional information on:

  Participants
  Collaborations
  Consequences

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 35

Requirements Modeling for WebApps
Content Analysis. The full spectrum of content to be provided by

the WebApp is identified, including text, graphics and images,
video, and audio data. Data modeling can be used to identify
and describe each of the data objects.

Interaction Analysis. The manner in which the user interacts with
the WebApp is described in detail. Use-cases can be
developed to provide detailed descriptions of this interaction.

Functional Analysis. The usage scenarios (use-cases) created as
part of interaction analysis define the operations that will be
applied to WebApp content and imply other processing
functions. All operations and functions are described in detail.

Configuration Analysis. The environment and infrastructure in
which the WebApp resides are described in detail.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 36

When Do We Perform Analysis?
  In some WebE situations, analysis and design

merge. However, an explicit analysis activity
occurs when …
  the WebApp to be built is large and/or complex
  the number of stakeholders is large
  the number of Web engineers and other contributors

is large
  the goals and objectives (determined during

formulation) for the WebApp will effect the businessʼ
bottom line

  the success of the WebApp will have a strong
bearing on the success of the business

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 37

The Content Model
  Content objects are extracted from use-cases

  examine the scenario description for direct and
indirect references to content

  Attributes of each content object are identified
  The relationships among content objects and/

or the hierarchy of content maintained by a
WebApp
  Relationships—entity-relationship diagram or UML
  Hierarchy—data tree or UML

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 38

Data Tree

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 39

The Interaction Model
  Composed of four elements:

  use-cases
  sequence diagrams
  state diagrams
  a user interface prototype

  Each of these is an important UML notation
and is described in Appendix I

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 40

Sequence Diagram

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 41

State Diagram

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 42

The Functional Model
  The functional model addresses two

processing elements of the WebApp
  user observable functionality that is delivered by the

WebApp to end-users
  the operations contained within analysis classes that

implement behaviors associated with the class.
  An activity diagram can be used to represent

processing flow

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 43

Activity Diagram

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 44

The Configuration Model
  Server-side

  Server hardware and operating system environment
must be specified

  Interoperability considerations on the server-side
must be considered

  Appropriate interfaces, communication protocols and
related collaborative information must be specified

  Client-side
  Browser configuration issues must be identified
  Testing requirements should be defined

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 45

Navigation Modeling-I
  Should certain elements be easier to reach (require

fewer navigation steps) than others? What is the priority
for presentation?

  Should certain elements be emphasized to force users to
navigate in their direction?

  How should navigation errors be handled?
  Should navigation to related groups of elements be given

priority over navigation to a specific element.
  Should navigation be accomplished via links, via search-

based access, or by some other means?
  Should certain elements be presented to users based on

the context of previous navigation actions?
  Should a navigation log be maintained for users?

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 46

Navigation Modeling-II
  Should a full navigation map or menu (as opposed to a single

“back” link or directed pointer) be available at every point in a
userʼs interaction?

  Should navigation design be driven by the most commonly
expected user behaviors or by the perceived importance of the
defined WebApp elements?

  Can a user “store” his previous navigation through the WebApp
to expedite future usage?

  For which user category should optimal navigation be
designed?

  How should links external to the WebApp be handled?
overlaying the existing browser window? as a new browser
window? as a separate frame?

