
!"#$%&'()*+,-*,--)

./00#'1)2)345"645"%()

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 1!

Chapter 9!
!  Architectural Design!

Slide Set to accompany  
Software Engineering: A Practitionerʼs Approach, 7/e #
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 2!

Why Architecture?!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 3!

Why is Architecture Important?!
!  Representations of software architecture are an enabler

for communication between all parties (stakeholders)
interested in the development of a computer-based
system.!

!  The architecture highlights early design decisions that
will have a profound impact on all software engineering
work that follows and, as important, on the ultimate
success of the system as an operational entity.!

!  Architecture “constitutes a relatively small, intellectually
graspable mode of how the system is structured and
how its components work together” [BAS03].!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 6!

Architectural Styles!

!  Data-centered architectures!
!  Data flow architectures!
!  Call and return architectures!
!  Object-oriented architectures!
!  Layered architectures!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 9!

Call and Return Architecture!

Joan A. Smith
Better known as a main program/subprogram architecture

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 10!

Layered Architecture!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 11!

Architectural Patterns!
!  Concurrency—applications must handle multiple tasks in a

manner that simulates parallelism !
!  operating system process management pattern!
!  task scheduler pattern!

!  Persistence—Data persists if it survives past the execution of
the process that created it. Two patterns are common: !
!  a database management system pattern that applies the storage

and retrieval capability of a DBMS to the application architecture!
!  an application level persistence pattern that builds persistence

features into the application architecture!
!  Distribution— the manner in which systems or components

within systems communicate with one another in a distributed
environment!
!  A broker acts as a ʻmiddle-manʼ between the client component and a

server component.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 19!

ADL!
!  Architectural description language (ADL) provides

a semantics and syntax for describing a software
architecture!

!  Provide the designer with the ability to: !
!  decompose architectural components!
!  compose individual components into larger architectural

blocks and !
!  represent interfaces (connection mechanisms) between

components. !

!"#$%&'()*+,-.'+./*'(0'1+*-%234(5#46/#6'(

7)058(933&1(

•! :#%-;'(7,<%=>>%31'.?1.#4@3*;?';/>*#%-;'>(

•! A4-B34(7,<%=>>CCC?+1?+$/?';/>DA4-B348(

•!)'13%(7,<%=>>CCC?+1?+$/?';/>D#E&'>#'13%8(

•! F*-6,.(7,<%=>>CCC?+1?+$/?';/>D#E&'>C*-6,.>8(

•!)+$'(7,<%=>>CCC?+1?+$/?';/>D#+$'>8(

•! AG5(7,<%=>>CCC?/$&?3*68(

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 1!

Chapter 10!
!  Component-Level Design!

Slide Set to accompany  
Software Engineering: A Practitionerʼs Approach, 7/e #
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 3!

OO Component!

PrintJob

computeJob

initiateJob

numberOfPages
numberOfSides
paperType
 paperWeight
 paperSize
 paperColor
magnification
colorRequirements
productionFeatures
 collationOptions
 bindingOptions
 coverStock
 bleed
 priority
totalJobCost
WOnumber

PrintJob

computePageCost ()
computePaperCost()
computeProdCost()
computeTotalJobCost ()
buildWorkOrder()
checkPriority ()
passJobto Production()

elaborated design class<<interface>>
computeJob

computePageCost()
computePaperCost()
computeProdCost()
computeTotalJobCost()

<<interface>>
initiateJob

buildWorkOrder()
checkPriority ()
passJobto Production()

design component

numberOfPages
numberOfSides
paperType
magnification
productionFeatur es

PrintJob

computeJobCost()
passJobtoPrinter()

analysis class

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 4!

Conventional Component!

ComputePageCost

design component

accessCostsDB

getJobData

elaborated module

PageCost

in: job size
in: color=1, 2, 3, 4
in: pageSize = A, B, C, B
out: BPC
out: SF

in: numberPages
in: numberDocs
in: sides= 1, 2
in: color=1, 2, 3, 4
in: page size = A, B, C, B
out: page cost

 job size (JS) =
 numberPages * numberDocs;
lookup base page cost (BPC) -->
 accessCostsDB (JS, color);
lookup size factor (SF) -->
 accessCostDB (JS, color, size)
job complexity factor (JCF) =
 1 + [(sides-1)*sideCost + SF]
pagecost = BPC * JCF

getJobData (numberPages, numberDocs,
sides, color, pageSize, pageCost)
accessCostsDB(jobSize, color, pageSize,
BPC, SF)
computePageCost()

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 5!

Basic Design Principles!
!  The Open-Closed Principle (OCP). “A module [component]

should be open for extension but closed for modification."
!  The Liskov Substitution Principle (LSP). “Subclasses should be

substitutable for their base classes."
!  Dependency Inversion Principle (DIP). “Depend on abstractions.

Do not depend on concretions.” !
!  The Interface Segregation Principle (ISP). “Many client-specific

interfaces are better than one general purpose interface."
!  The Release Reuse Equivalency Principle (REP). “The granule of

reuse is the granule of release.” !
!  The Common Closure Principle (CCP). “Classes that change

together belong together.” "
!  The Common Reuse Principle (CRP). “Classes that arenʼt reused

together should not be grouped together.” !

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 6!

Design Guidelines!
!  Components!

!  Naming conventions should be established for
components that are specified as part of the
architectural model and then refined and elaborated
as part of the component-level model!

!  Interfaces!
!  Interfaces provide important information about

communication and collaboration (as well as helping
us to achieve the OPC)!

!  Dependencies and Inheritance!
!  it is a good idea to model dependencies from left to

right and inheritance from bottom (derived classes)
to top (base classes).!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 7!

Cohesion!
!  Conventional view: !

!  the “single-mindedness” of a module!
!  OO view: !

!  cohesion implies that a component or class encapsulates
only attributes and operations that are closely related to one
another and to the class or component itself!

!  Levels of cohesion!
!  Functional!
!  Layer!
!  Communicational!
!  Sequential!
!  Procedural!
!  Temporal!
!  utility!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 8!

Coupling!
!  Conventional view: !

!  The degree to which a component is connected to other
components and to the external world!

!  OO view:!
!  a qualitative measure of the degree to which classes are

connected to one another!
!  Level of coupling!

!  Content!
!  Common!
!  Control!
!  Stamp!
!  Data!
!  Routine call!
!  Type use!
!  Inclusion or import!
!  External!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 1!

Chapter 11!
!  User Interface Design!

Slide Set to accompany  
Software Engineering: A Practitionerʼs Approach, 7/e #
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 2!

Interface Design!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 3!

Interface Design!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 4!

Golden Rules!

!  Place the user in control!
!  Reduce the userʼs memory load!
!  Make the interface consistent!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 5!

Place the User in Control!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 6!

Reduce the Userʼs Memory Load!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 7!

Make the Interface Consistent!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 11!

User Analysis!
!  Are users trained professionals, technician, clerical, or manufacturing workers?!
!  What level of formal education does the average user have?!
!  Are the users capable of learning from written materials or have they expressed

a desire for classroom training?!
!  Are users expert typists or keyboard phobic?!
!  What is the age range of the user community?!
!  Will the users be represented predominately by one gender?!
!  How are users compensated for the work they perform? !
!  Do users work normal office hours or do they work until the job is done?!
!  Is the software to be an integral part of the work users do or will it be used only

occasionally?!
!  What is the primary spoken language among users?!
!  What are the consequences if a user makes a mistake using the system?!
!  Are users experts in the subject matter that is addressed by the system?!
!  Do users want to know about the technology the sits behind the interface?!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 16!

Design Issues!
!  Response time!
!  Help facilities!
!  Error handling!
!  Menu and command

labeling!
!  Application accessibility!
!  Internationalization!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 17!

WebApp Interface Design!
!  Where am I? The interface should !

!  provide an indication of the WebApp that has been accessed !
!  inform the user of her location in the content hierarchy.!

!  What can I do now? The interface should always help the user
understand his current options!
!  what functions are available?!
!  what links are live?!
!  what content is relevant?!

!  Where have I been, where am I going? The interface must
facilitate navigation. !
!  Provide a “map” (implemented in a way that is easy to understand)

of where the user has been and what paths may be taken to move
elsewhere within the WebApp.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 18!

Effective WebApp Interfaces!
!  Bruce Tognozzi [TOG01] suggests…!

!  Effective interfaces are visually apparent and
forgiving, instilling in their users a sense of control.
Users quickly see the breadth of their options, grasp
how to achieve their goals, and do their work.!

!  Effective interfaces do not concern the user with the
inner workings of the system. Work is carefully and
continuously saved, with full option for the user to
undo any activity at any time.!

!  Effective applications and services perform a
maximum of work, while requiring a minimum of
information from users.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 23!

Mapping User Objectives!

objective #1
objective #2
objective #3
objective #4
objective #5

objective #n

List of user objectives

Home page text copy

graphic

graphic, logo, and company name

Navigation
menu

Menu bar
major functions

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 25!

Aesthetic Design!
!  Donʼt be afraid of white space.!
!  Emphasize content.!
!  Organize layout elements from top-left to

bottom right. !
!  Group navigation, content, and function

geographically within the page.!
!  Donʼt extend your real estate with the scrolling

bar.!
!  Consider resolution and browser window size

when designing layout.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 26!

Design Evaluation Cycle!

