
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 1!

Chapter 12!
  Pattern-Based Design!

Slide Set to accompany 
Software Engineering: A Practitionerʼs Approach, 7/e #
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 2!

Design Patterns!
  Each of us has encountered a design problem

and silently thought: I wonder if anyone has
developed a solution to for this?!
  What if there was a standard way of describing a

problem (so you could look it up), and an organized
method for representing the solution to the problem? !

  Design patterns are a codified method for
describing problems and their solution allows
the software engineering community to
capture design knowledge in a way that
enables it to be reused.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 3!

Design Patterns!
  Each pattern describes a problem that occurs over

and over again in our environment and then
describes the core of the solution to that problem in
such a way that you can use the solution a million
times over without ever doing it the same way
twice.!

• Christopher Alexander, 1977!
  “a three-part rule which expresses a relation

between a certain context, a problem, and a
solution.”!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 4!

Basic Concepts!
  Context allows the reader to understand the

environment in which the problem resides and
what solution might be appropriate within that
environment. !

  A set of requirements, including limitations
and constraints, acts as a system of forces that
influences how !
  the problem can be interpreted within its context and !
  how the solution can be effectively applied.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 5!

Effective Patterns!
  Coplien [Cop05] characterizes an effective design pattern

in the following way:!
  It solves a problem: Patterns capture solutions, not just abstract

principles or strategies.
  It is a proven concept: Patterns capture solutions with a track

record, not theories or speculation.
  The solution isn't obvious: Many problem-solving techniques

(such as software design paradigms or methods) try to derive
solutions from first principles. The best patterns generate a
solution to a problem indirectly--a necessary approach for the
most difficult problems of design.

  It describes a relationship: Patterns don't just describe modules,
but describe deeper system structures and mechanisms.

  The pattern has a significant human component (minimize human
intervention). All software serves human comfort or quality of
life; the best patterns explicitly appeal to aesthetics and utility.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 6!

Generative Patterns!
  Generative patterns describe an important and

repeatable aspect of a system and then provide
us with a way to build that aspect within a
system of forces that are unique to a given
context. !

  A collection of generative design patterns
could be used to “generate” an application or
computer-based system whose architecture
enables it to adapt to change. !

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 7!

Kinds of Patterns!
  Architectural patterns describe broad-based design problems

that are solved using a structural approach.!
  Data patterns describe recurring data-oriented problems and

the data modeling solutions that can be used to solve them. !
  Component patterns (also referred to as design patterns) address

problems associated with the development of subsystems and
components, the manner in which they communicate with one
another, and their placement within a larger architecture!

  Interface design patterns describe common user interface
problems and their solution with a system of forces that
includes the specific characteristics of end-users. !

  WebApp patterns address a problem set that is encountered
when building WebApps and often incorporates many of the
other patterns categories just mentioned. !

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 8!

Kinds of Patterns!
  Creational patterns focus on the “creation, composition, and

representation of objects, e.g., !
  Abstract factory pattern: centralize decision of what factory to instantiate
  Factory method pattern: centralize creation of an object of a specific type

choosing one of several implementations
  Structural patterns focus on problems and solutions associated with

how classes and objects are organized and integrated to build a larger
structure, e.g., !
  Adapter pattern: 'adapts' one interface for a class into one that a client expects
  Aggregate pattern: a version of the Composite pattern with methods for

aggregation of children
  Behavioral patterns address problems associated with the assignment

of responsibility between objects and the manner in which
communication is effected between objects, e.g., !
  Chain of responsibility pattern: Command objects are handled or passed on to

other objects by logic-containing processing objects
  Command pattern: Command objects encapsulate an action and its parameters

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 9!

Frameworks!
  Patterns themselves may not be sufficient to develop a

complete design. !
  In some cases it may be necessary to provide an

implementation-specific skeletal infrastructure, called a
framework, for design work. !

  That is, you can select a “reusable mini-architecture that
provides the generic structure and behavior for a family of
software abstractions, along with a context … which specifies
their collaboration and use within a given domain.” [Amb98]

  A framework is not an architectural pattern, but rather a
skeleton with a collection of “plug points” (also called
hooks and slots) that enable it to be adapted to a specific
problem domain. !
  The plug points enable you to integrate problem specific

classes or functionality within the skeleton.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 10!

Describing a Pattern!
  Pattern name—describes the essence of the pattern in a short but expressive

name !
  Problem—describes the problem that the pattern addresses!
  Motivation—provides an example of the problem !
  Context—describes the environment in which the problem resides including

application domain!
  Forces—lists the system of forces that affect the manner in which the problem

must be solved; includes a discussion of limitation and constraints that must be
considered!

  Solution—provides a detailed description of the solution proposed for the
problem!

  Intent—describes the pattern and what it does!
  Collaborations—describes how other patterns contribute to the solution!
  Consequences—describes the potential trade-offs that must be considered when

the pattern is implemented and the consequences of using the pattern!
  Implementation—identifies special issues that should be considered when

implementing the pattern!
  Known uses—provides examples of actual uses of the design pattern in real

applications!
  Related patterns—cross-references related design patterns!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 11!

Pattern Languages!
  A pattern language encompasses a collection of patterns!

  each described using a standardized template (Section
12.1.3) and !

  interrelated to show how these patterns collaborate to
solve problems across an application domain.!

  a pattern language is analogous to a hypertext
instruction manual for problem solving in a specific
application domain.!
  The problem domain under consideration is first described

hierarchically, beginning with broad design problems
associated with the domain and then refining each of the
broad problems into lower levels of abstraction.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 12!

Pattern-Based Design!
  A software designer begins with a

requirements model (either explicit or implied)
that presents an abstract representation of the
system. !

  The requirements model describes the problem
set, establishes the context, and identifies the
system of forces that hold sway.!

  Then …!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 13!

Pattern-Based Design!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 14!

Thinking in Patterns!
  Shalloway and Trott [Sha05] suggest the following

approach that enables a designer to think in patterns:!
  1. Be sure you understand the big picture—the context in

which the software to be built resides. The requirements
model should communicate this to you.!

  2. Examining the big picture, extract the patterns that are
present at that level of abstraction.!

  3. Begin your design with ‘big picture’ patterns that
establish a context or skeleton for further design work.!

  4. “Work inward from the context” [Sha05] looking for
patterns at lower levels of abstraction that contribute to the
design solution.!

  5. Repeat steps 1 to 4 until the complete design is fleshed
out.!

  6. Refine the design by adapting each pattern to the
specifics of the software you’re trying to build.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 15!

Design Tasks—I!
  Examine the requirements model and develop a problem

hierarchy. !
  Determine if a reliable pattern language has been

developed for the problem domain.!
  Beginning with a broad problem, determine whether one

or more architectural patterns are available for it.!
  Using the collaborations provided for the architectural

pattern, examine subsystem or component level
problems and search for appropriate patterns to address
them.!

  Repeat steps 2 through 5 until all broad problems have
been addressed. !

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 16!

Design Tasks—II!
  If user interface design problems have been

isolated (this is almost always the case), search
the many user interface design pattern
repositories for appropriate patterns.!

  Regardless of its level of abstraction, if a
pattern language and/or patterns repository or
individual pattern shows promise, compare the
problem to be solved against the existing
pattern(s) presented.!

  Be certain to refine the design as it is derived
from patterns using design quality criteria as a
guide.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 17!

Pattern Organizing Table!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 18!

Common Design Mistakes!
  Not enough time has been spent to understand the

underlying problem, its context and forces, and as a
consequence, you select a pattern that looks right, but is
inappropriate for the solution required. !

  Once the wrong pattern is selected, you refuse to see
your error and force fit the pattern. !

  In other cases, the problem has forces that are not
considered by the pattern you’ve chosen, resulting in a
poor or erroneous fit. !

  Sometimes a pattern is applied too literally and the
required adaptations for your problem space are not
implemented. !

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 19!

Architectural Patterns!
  Example: every house (and every architectural style for

houses) employs a Kitchen pattern. !
  The Kitchen pattern and patterns it collaborates with

address problems associated with the storage and
preparation of food, the tools required to accomplish
these tasks, and rules for placement of these tools
relative to workflow in the room. !

  In addition, the pattern might address problems
associated with counter tops, lighting, wall switches, a
central island, flooring, and so on.!

  Obviously, there is more than a single design for a
kitchen, often dictated by the context and system of
forces. But every design can be conceived within the
context of the ‘solution’ suggested by the Kitchen
pattern. !

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 20!

Patterns Repositories!
  There are many sources for design patterns

available on the Web. Some patterns can be
obtained from individually published pattern
languages, while others are available as part of
a patterns portal or patterns repository.!

  A list of patterns repositories is presented in
the sidebar near Section 12.3!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 21!

Component-Level Patterns!
  Component-level design patterns provide a

proven solution that addresses one or more
sub-problems extracted from the requirement
model. !

  In many cases, design patterns of this type
focus on some functional element of a system.!

  For example, the SafeHomeAssured.com
application must address the following design
sub-problem: How can we get product
specifications and related information for any
SafeHome device?!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 22!

Component-Level Patterns!
  Having enunciated the sub-problem that must be solved,

consider context and the system of forces that affect the
solution. !

  Examining the appropriate requirements model use
case, the specification for a SafeHome device (e.g., a
security sensor or camera) is used for informational
purposes by the consumer. !
  However, other information that is related to the

specification (e.g., pricing) may be used when e-commerce
functionality is selected. !

  The solution to the sub-problem involves a search. Since
searching is a very common problem, it should come as
no surprise that there are many search-related patterns.!

  See Section 12.4!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 23!

User Interface (UI) Patterns!
  Whole UI. Provide design guidance for top-level structure and navigation throughout the

entire interface.!

  Page layout. Address the general organization of pages (for Websites) or distinct screen
displays (for interactive applications)!

  Forms and input. Consider a variety of design techniques for completing form-level input.!

  Tables. Provide design guidance for creating and manipulating tabular data of all kinds.!

  Direct data manipulation. Address data editing, modification, and transformation.!

  Navigation. Assist the user in navigating through hierarchical menus, Web pages, and
interactive display screens.!

  Searching. Enable content-specific searches through information maintained within a Web site
or contained by persistent data stores that are accessible via an interactive application. !

  Page elements. Implement specific elements of a Web page or display screen.!

  E-commerce. Specific to Web sites, these patterns implement recurring elements of e-
commerce applications.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 24!

WebApp Patterns!
  Information architecture patterns relate to the overall structure of the

information space, and the ways in which users will interact with the
information. !

  Navigation patterns define navigation link structures, such as
hierarchies, rings, tours, and so on.!

  Interaction patterns contribute to the design of the user interface. Patterns
in this category address how the interface informs the user of the
consequences of a specific action; how a user expands content based on usage
context and user desires; how to best describe the destination that is implied
by a link; how to inform the user about the status of an on-going interaction,
and interface related issues.!

  Presentation patterns assist in the presentation of content as it is presented
to the user via the interface. Patterns in this category address how to organize
user interface control functions for better usability; how to show the
relationship between an interface action and the content objects it affects, and
how to establish effective content hierarchies.!

  Functional patterns define the workflows, behaviors, processing,
communications, and other algorithmic elements within a WebApp.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 25!

Design Granularity!
  When a problem involves “big picture” issues,

attempt to develop solutions (and use relevant
patterns) that focus on the big picture.!

  Conversely, when the focus is very narrow
(e.g., uniquely selecting one item from a small
set of five or fewer items), the solution (and the
corresponding pattern) is targeted quite
narrowly. !

  In terms of the level of granularity, patterns can
be described at the following levels:!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.! 26!

Design Granularity!
  Architectural patterns. This level of abstraction will typically

relate to patterns that define the overall structure of the
WebApp, indicate the relationships among different
components or increments, and define the rules for specifying
relationships among the elements (pages, packages,
components, subsystems) of the architecture.!

  Design patterns. These address a specific element of the
design such as an aggregation of components to solve some
design problem, relationships among elements on a page, or
the mechanisms for effecting component to component
communication. An example might be the Broadsheet pattern
for the layout of a WebApp homepage.!

  Component patterns. This level of abstraction relates to
individual small-scale elements of a WebApp. Examples
include individual interaction elements (e.g. radio buttons, text
books), navigation items (e.g. how might you format links?) or
functional elements (e.g. specific algorithms).!

