
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 1

Chapter 17
  Software Testing Strategies

Slide Set to accompany  
Software Engineering: A Practitionerʼs Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 2

Software Testing

Testing is the process of exercising
a program with the specific intent of
finding errors prior to delivery to the
end user.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 3

What Testing Shows

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 4

Strategic Approach
  To perform effective testing, you should conduct

effective technical reviews. By doing this, many errors
will be eliminated before testing commences.

  Testing begins at the component level and works
"outward" toward the integration of the entire computer-
based system.

  Different testing techniques are appropriate for different
software engineering approaches and at different points
in time.

  Testing is conducted by the developer of the software
and (for large projects) an independent test group.

  Testing and debugging are different activities, but
debugging must be accommodated in any testing
strategy.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 5

V & V
  Verification refers to the set of tasks that ensure

that software correctly implements a specific
function.

  Validation refers to a different set of tasks that
ensure that the software that has been built is
traceable to customer requirements. Boehm
[Boe81] states this another way:
  Verification: "Are we building the product right?"
  Validation: "Are we building the right product?"

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 6

Who Tests the Software?

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 7

Testing Strategy

System engineering
Analysis modeling

Design modeling
Code generation Unit test

Integration test

Validation test

System test

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 8

Testing Strategy
  We begin by ʻtesting-in-the-smallʼ and move

toward ʻtesting-in-the-largeʼ
  For conventional software

  The module (component) is our initial focus
  Integration of modules follows

  For OO software
  our focus when “testing in the small” changes from

an individual module (the conventional view) to an
OO class that encompasses attributes and
operations and implies communication and
collaboration

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 9

Strategic Issues
  Specify product requirements in a quantifiable manner

long before testing commences.
  State testing objectives explicitly.
  Understand the users of the software and develop a

profile for each user category.
  Develop a testing plan that emphasizes “rapid cycle

testing.”
  Build “robust” software that is designed to test itself
  Use effective technical reviews as a filter prior to testing
  Conduct technical reviews to assess the test strategy

and test cases themselves.
  Develop a continuous improvement approach for the

testing process.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 10

Unit Testing

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 11

Unit Testing

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 12

Unit Test Environment

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 13

Integration Testing Strategies

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 14

Top Down Integration

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 15

Bottom-Up Integration

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 16

Sandwich Testing

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 17

Regression Testing
  Regression testing is the re-execution of some subset of

tests that have already been conducted to ensure that
changes have not propagated unintended side effects

  Whenever software is corrected, some aspect of the
software configuration (the program, its documentation,
or the data that support it) is changed.

  Regression testing helps to ensure that changes (due to
testing or for other reasons) do not introduce unintended
behavior or additional errors.

  Regression testing may be conducted manually, by re-
executing a subset of all test cases or using automated
capture/playback tools.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 18

Smoke Testing
  A common approach for creating “daily builds” for product

software
  Smoke testing steps:

  Software components that have been translated into code are
integrated into a “build.”

•  A build includes all data files, libraries, reusable modules, and engineered
components that are required to implement one or more product
functions.

  A series of tests is designed to expose errors that will keep the build
from properly performing its function.

•  The intent should be to uncover “show stopper” errors that have the
highest likelihood of throwing the software project behind schedule.

  The build is integrated with other builds and the entire product (in its
current form) is smoke tested daily.

•  The integration approach may be top down or bottom up.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 19

Object-Oriented Testing
  begins by evaluating the correctness and

consistency of the analysis and design models
  testing strategy changes

  the concept of the ʻunitʼ broadens due to
encapsulation

  integration focuses on classes and their execution
across a ʻthreadʼ or in the context of a usage
scenario

  validation uses conventional black box methods
  test case design draws on conventional

methods, but also encompasses special
features

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 20

Broadening the View of “Testing”

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 21

Testing the CRC Model

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 22

OO Testing Strategy
  class testing is the equivalent of unit testing

  operations within the class are tested
  the state behavior of the class is examined

  integration applied three different strategies
  thread-based testing—integrates the set of

classes required to respond to one input or event
  use-based testing—integrates the set of classes

required to respond to one use case
  cluster testing—integrates the set of classes

required to demonstrate one collaboration

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 23

WebApp Testing - I
  The content model for the WebApp is reviewed

to uncover errors.
  The interface model is reviewed to ensure that

all use cases can be accommodated.
  The design model for the WebApp is reviewed

to uncover navigation errors.
  The user interface is tested to uncover errors in

presentation and/or navigation mechanics.
  Each functional component is unit tested.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 24

WebApp Testing - II
  Navigation throughout the architecture is tested.
  The WebApp is implemented in a variety of different

environmental configurations and is tested for
compatibility with each configuration.

  Security tests are conducted in an attempt to exploit
vulnerabilities in the WebApp or within its environment.

  Performance tests are conducted.
  The WebApp is tested by a controlled and monitored

population of end-users. The results of their interaction
with the system are evaluated for content and navigation
errors, usability concerns, compatibility concerns, and
WebApp reliability and performance.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 25

High Order Testing
  Validation testing

  Focus is on software requirements
  System testing

  Focus is on system integration
  Alpha/Beta testing

  Focus is on customer usage
  Recovery testing

  forces the software to fail in a variety of ways and verifies that recovery is
properly performed

  Security testing
  verifies that protection mechanisms built into a system will, in fact, protect it

from improper penetration
  Stress testing

  executes a system in a manner that demands resources in abnormal quantity,
frequency, or volume

  Performance Testing
  test the run-time performance of software within the context of an integrated

system

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 26

Debugging: A Diagnostic Process

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 27

The Debugging Process

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 28

Debugging Effort

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 29

Symptoms & Causes

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 30

Consequences of Bugs

damage

mild annoying

disturbing
serious

extreme
catastrophic

infectious

Bug Type

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 31

Debugging Techniques

brute force / testing

backtracking

induction

deduction

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 32

Correcting the Error
  Is the cause of the bug reproduced in another part of the program? In

many situations, a program defect is caused by an erroneous
pattern of logic that may be reproduced elsewhere.

  What "next bug" might be introduced by the fix I'm about to make?
Before the correction is made, the source code (or, better, the
design) should be evaluated to assess coupling of logic and
data structures.

  What could we have done to prevent this bug in the first place? This
question is the first step toward establishing a statistical
software quality assurance approach. If you correct the process
as well as the product, the bug will be removed from the
current program and may be eliminated from all future
programs.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 33

Final Thoughts
  Think -- before you act to correct
  Use tools to gain additional insight
  If youʼre at an impasse, get help from someone

else
  Once you correct the bug, use regression

testing to uncover any side effects

