Chapters 18 - 20



Testing , Reliability, & Quality

e Testing cannot prove a product has no errors
— It can only find errors and/or show they have been fixed
— ... Orfail to find errors
— It cannot prove a product is error free
* Reliability
— probability of failure free operation of a computer program in a specified
environment for a specified time period

— Software reliability problems can usually be traced back to errors in design or
implementation

e Statistical Quality Assurance
— Collect, categorize and trace each error

— |solate the main causes
e 80% errors from 20% source
e Also called “viral few causes”

— Focus on fixing those error sources
— Result: 80% reduction in error

CS-584/Emory



Software Testing Objectives

* Testing is the process of executing a program
with the intent of finding errors.

e A good test case is one with a high probability
of finding an as-yet undiscovered error.

e A successful test is one that discovers an as-
yet-undiscovered error.

CS-584/Emory



White Box vs Black Box Testing

 White Box
— Knowledge of inner workings of the program
— Unit Testing is an example
— EVERY statement/condition tested at least once
» Error likelihood is inversely proportional to path’s execution probability

* Black Box

— No implicit knowledge of inner workings of the program

— Independent testers run “black box” tests (they don’t know the code)
 Modern testing has dropped these terms

— Functional: Does it do what it says it will do?

— Operational: Does it behave as expected?

— Performance: Does it scale?

— General user interface and system response
— Boundary Value Analysis (if normal limits = a, b then test a1 and b+1)

CS-584/Emory



Good Test Attributes

* A good test has a high probability of finding an
error.

* A good test is not redundant.
* A good test should be best of breed.

* A good test should not be too simple or too
complex.

CS-584/Emory



Object Oriented Software Test Strategies

e the definition of testing must be broadened to
include error discovery techniques applied to
object-oriented analysis and design models

e the strategy for unit and integration testing must
change significantly, and

* the design of test cases must account for the
unique characteristics of OO software.

CS-584/Emory



Testing Object-Based Software

* Thread-based testing

— integrates the set of classes required to respond to one
input or event for the system

» Use-based testing

— begins the construction of the system by testing those
classes (called independent classés) that use very few (if
any) of server classes.

— After the independent classes are tested, the next
layer of classes, called dependent classes

o Cluster testing [McG94]

— defines a cluster of collaborating classes (determined
by examining the CRC and object-relationship model)
is exercised by designing test cases that attempt to
uncover errors in the collaborations.

CS-584/Emory



Object-Oriented Testing Approach

* Each test case should be uniquely identified and should be explicitly
associated with the class to be tested,

 The purpose of the test should be stated,

* Alist of testing steps should be developed for each test and should
contain [BER93]:

a list of specified states for the object that is to be tested

a list of messages and operations that will be exercised as a
consequence of the test

a list of exceptions that may occur as the object is tested

a list of external conditions (i.e., changes in the environment external
to the software that must exist in order to properly conduct the test)

supplementary information that will aid in understanding or
implementing the test.

CS-584/Emory



Object-Oriented Test Methods

* Fault-based testing

— The tester looks for plausible faults (i.e., aspects of the
implementation of the system that may result in defects). To
determine whether these faults exist, test cases are designed to
exercise the design or code.

* C(Class Testing and the Class Hierarchy
— Inheritance does not obviate the need for thorough testing of all
derived classes. In fact, it can actually complicate the testing process.

e Scenario-Based Test Design

— Scenario-based testing concentrates on what the user does, not what
the product does. This means capturing the tasks (via use-cases) that
the user has to perform, then applying them and their variants as
tests.

CS-584/Emory



OOT Methods: Behavior Testing

. empty | setup
open acct setup Accnt acct
« The tests to be designed

should achieve coverage deposi
of all possible states

deposit
« Ex: the operation woring
sequences should cause alance acct
the Account class to Owithdraw

credit

transition through all acentinfo

allowable states \(l]\c/iirtr;cli)rawal

dead | nonworking
acct close acct

CS-584/Emory 10




Web App Errors

Because many types of WebApp tests uncover problems that are first
evidenced on the client side, you often see a symptom of the error,
not the error itself.

Because a WebApp 1s implemented in a number of different
configurations and within different environments, it may be difficult
or impossible to reproduce an error outside the environment in
which the error was originally encountered.

Although some errors are the result of incorrect design or improper
HTML (or other programming language) coding, many errors can be
traced to the WebApp configuration.

Because WebApps reside within a client/server architecture, errors
can be difficult to trace across three architectural layers: the client,
the server, or the network itself.

Some errors are due to the static operating environment (1.e., the
specific conﬁFuratlon in which testing 1s conducted), while others
are attributable to the dynamic operating environment (i1.e.,
instantaneous resource loading or time-related errors).

CS-584/Emory

11



Web App Testing -1

* Content is evaluated at both a syntactic and semantic level.

— syntactic level—spelling, punctuation and grammar are assessed
for text-based documents.

— semantic level—correctness (of information presented),
consistency (across the entire content object and related
objects) and lack of ambiguity are all assessed.

* Function is tested for correctness, instability, and general
conformance to appropriate implementation standards
(e.g.,Java or XML language standards).

* Structure is assessed to ensure that it
— properly delivers WebApp content and function
— is extensible
— can be supported as new content or functionality is added.

CS-584/Emory

12



Web App Testing - 2

* Usability is tested to ensure that each category of user
— is supported by the interface

— can learn and apply all required navigation syntax and semantics
* Navigability is tested to ensure that
— all navigation syntax and semantics are exercised to uncover any
navigation errors (e.g., dead links, improper links, erroneous links).
* Performance is tested under a variety of operating conditions,
configurations, and loading to ensure that
— the system is responsive to user interaction

— the system handles extreme loading without unacceptable operational
degradation

CS-584/Emory 13



Web App Testing - 3

e Compatibility
— tested by executing the WebApp in a variety of different
host configurations on both the client and server sides.

— The intent is to find errors that are specific to a unique
host configuration.

* [nteroperability

— tested to ensure that the WebApp properly interfaces with
other applications and/or databases.

* Security

— tested by assessing potential vulnerabilities and
attempting to exploit each.

— Any successful penetration attempt is deemed a security
failure.

CS-584/Emory



Assessing Content Semantics

Is the information factually accurate?

Is the information concise and to the point?

Is the layout of the content object easy for the user to understand?
Can information embedded within a content object be found easily?

Have proper references been provided for all information derived from
other sources?

Is the information presented consistent internally and consistent with
information presented in other content objects?

Is the content offensive, misleading, or does it open the door to litigation?
Does the content infringe on existing copyrights or trademarks?

Does the content contain internal links that supplement existing content?
Are the links correct?

Does the aesthetic style of the content conflict with the aesthetic style of
the interface?

CS-584/Emory

15



Database Testing

client layer - user interface

HTML scripts

server layer - WebApp

Tests are defined for user data

each layer N

server layer - data transformation

user data <@ SQL

server layer - data management

raw data SQL

database layer - data access

~

CS-584/Emory 16



User Interface Testing

* Interface features are tested to ensure that design rules,
aesthetics, and related visual content is available for the user
without error.

* |ndividual interface mechanisms are tested in a manner that is
analogous to unit testing.

e Each interface mechanism is tested within the context of a
use-case or NSU for a specific user category.

 The complete interface is tested against selected use-cases
and NSUs to uncover errors in the semantics of the interface.

 The interface is tested within a variety of environments (e.g.,
browsers) to ensure that it will be compatible.

CS-584/Emory 17



Testing Interface Mechanisms-|

Links—navigation mechanisms that link the user to some
other content object or function.

Forms—a structured document containing blank fields that
are filled in by the user. The data contained in the fields are
used as input to one or more WebApp functions.

Client-side scripting—a list of programmed commands in a
scripting language (e.g., Javascript) that handle information
input via forms or other user interactions

Dynamic HTML—I|eads to content objects that are
manipulated on the client side using scripting or cascading
style sheets (CSS).

Client-side pop-up windows—small windows that pop-up
without user interaction. These windows can be content-
oriented and may require some form of user interaction.

CS-584/Emory

18



Testing Interface Mechanisms-Ii

* (Gl scripts—a common gateway interface (CGl) script implements a
standard method that allows a Web server to interact dynamically with
users (e.g., a WebApp that contains forms may use a CGI script to process
the data contained in the form once it is submitted by the user).

* Streaming content—rather than waiting for a request from the client-side,
content objects are downloaded automatically from the server side. This
approach is sometimes called “push” technology because the server
pushes data to the client.

* Cookies—a block of data sent by the server and stored by a browser as a
consequence of a specific user interaction. The content of the data is
WebApp-specific (e.g., user identification data or a list of items that have
been selected for purchase by the user).

* Application specific interface mechanisms—include one or more “macro”
interface mechanisms such as a shopping cart, credit card processing, or a
shipping cost calculator.

CS-584/Emory 19



Usability Tests

* Design by WebE team ... executed by end-users

» Testing sequence ...

Define a set of usability testing categories and identify goals for each.
Design tests that will enable each goal to be evaluated.

Select participants who will conduct the tests.

Instrument participants’ interaction with the WebApp while testing is
conducted.

Develop a mechanism for assessing the usability of the WebApp

e Different levels of abstraction:

CS-584/Emory

the usability of a specific interface mechanism (e.g., a form) can be
assessed

the usability of a complete Web page (encompassing interface
mechanisms, data objects and related functions) can be evaluated

the usability of the complete WebApp can be considered.

20



Compatibility Testing

 Compatibility testing is to define a set of “commonly encountered” client
side computing configurations and their variants

* Create a tree structure identifying

each computing platform

typical display devices

the operating systems supported on the platform
the browsers available

likely Internet connection speeds

similar information.

* Derive a series of compatibility validation tests

derived from existing interface tests, navigation tests, performance tests, and
security tests.

intent of these tests is to uncover errors or execution problems that can be
traced to configuration differences.

CS-584/Emory 21



Component-Level Testing

* Focuses on a set of tests that attempt to uncover
errors in WebApp functions

e Conventional black-box and white-box test case
design methods can be used

* Database testing is often an integral part of the
component-testing regime

CS-584/Emory 22



Navigation Testing

* The following navigation mechanisms should be tested:

CS-584/Emory

Navigation links—these mechanisms include internal links within the
WebApp, external links to other WebApps, and anchors within a specific
Web page.

Redirects—these links come into play when a user requests a non-existent
URL or selects a link whose destination has been removed or whose name
has changed.

Bookmarks—although bookmarks are a browser function, the WebApp
should be tested to ensure that a meaningful page title can be extracted
as the bookmark is created.

Frames and framesets—tested for correct content, proper layout and
sizing, download performance, and browser compatibility

Site maps—Each site map entry should be tested to ensure that the link
takes the user to the proper content or functionality.

Internal search engines—Search engine testing validates the accuracy and
completeness of the search, the error-handling properties of the search
engine, and advanced search features

23



CS-584/Emory

Testing Navigation Semantics-|

Is the NSU achieved in its entirety without error?
Is every navigation node (defined for a NSU) reachable within the context
of the navigation paths defined for the NSU?

If the NSU can be achieved using more than one navigation path, has
every relevant path been tested?

If guidance is provided by the user interface to assist in navigation, are
directions correct and understandable as navigation proceeds?

Is there a mechanism (other than the browser ‘back’ arrow) for returning
to the preceding navigation node and to the beginning of the navigation
path.

Do mechanisms for navigation within a large navigation node (i.e., a long
web page) work properly?

If a function is to be executed at a node and the user chooses not to
provide input, can the remainder of the NSU be completed?

24



Testing Navigation Semantics-I|

If a function is executed at a node and an error in function
processing occurs, can the NSU be completed?

Is there a way to discontinue the navigation before all nodes
have been reached, but then return to where the navigation
was discontinued and proceed from there?

|s every node reachable from the site map? Are node names
meaningful to end-users?

If a node within an NSU is reached from some external source,
is it possible to process to the next node on the navigation
path. Is it possible to return to the previous node on the
navigation path?

Does the user understand his location within the content
architecture as the NSU is executed?

CS-584/Emory

25



Configuration Testing

e Server-side

Is the WebApp fully compatible with the server OS?

Are system files, directories, and related system data created correctly
when the WebApp is operational?

Do system security measures (e.g., firewalls or encryption) allow the
WebApp to execute and service users without interference or
performance degradation?

Has the WebApp been tested with the distributed server configuration
(if one exists) that has been chosen?

Is the WebApp properly integrated with database software? Is the
WebApp sensitive to different versions of database software?

Do server-side WebApp scripts execute properly?

Have system administrator errors been examined for their affect on
WebApp operations?

If proxy servers are used, have differences in their configuration been
addressed with on-site testing?

CS-584/Emory 26



Configuration Testing

 C(Client-side

Hardware—CPU, memory, storage and printing devices

Operating systems—Linux, Macintosh OS, Microsoft Windows, a
mobile-based OS

Browser software—Internet Explorer, Mozilla/Netscape, Opera, Safari,
and others

User interface components—Active X, Java applets and others
Plug-ins—QuickTime, RealPlayer, and many others
Connectivity—cable, DSL, regular modem, T1

 The number of configuration variables must be reduced to a
manageable number

CS-584/Emory

27



Security Testing

* Designed to probe vulnerabilities of the client-side
environment, the network communications that occur as data
are passed from client to server and back again, and the
server-side environment

* On the client-side, vulnerabilities can often be traced to pre-
existing bugs in browsers, e-mail programs, or communication
software.

* On the server-side, vulnerabilities include denial-of-service
attacks and malicious scripts that can be passed along to the
client-side or used to disable server operations

CS-584/Emory

28



Performance Testing

* Does the server response time degrade to a point where it is noticeable
and unacceptable?

* At what point (in terms of users, transactions or data loading) does
performance become unacceptable?

 What system components are responsible for performance degradation?

 What is the average response time for users under a variety of loading
conditions?

* Does performance degradation have an impact on system security?

* |s WebApp reliability or accuracy affected as the load on the system
grows?

 What happens when loads that are greater than maximum server capacity
are applied?

CS-584/Emory 29



Load Testing

* The intent is to determine how the WebApp and its
server-side environment will respond to various
loading conditions

— N, the number of concurrent users

— T, the number of on-line transactions per unit of time

— D, the data load processed by the server per transaction
e QOverall throughput, P, is computed in the following

mMmanner.
e P=NxTxD

CS-584/Emory

30



Stress Testing

* Does the system degrade ‘gently’ or does the server shut down as capacity
is exceeded?

* Does server software generate “server not available” messages? More
generally, are users aware that they cannot reach the server?

* Does the server queue requests for resources and empty the queue once
capacity demands diminish?

* Are transactions lost as capacity is exceeded?

* |s data integrity affected as capacity is exceeded?

* What values of N, T, and D force the server environment to fail? How does failure
manifest itself? Are automated notifications sent to technical support staff at the
server site?

* If the system does fail, how long will it take to come back on-line?

* Are certain WebApp functions (e.g., compute intensive functionality, data
streaming capabilities) discontinued as capacity reaches the 80 or 90 percent
level?

CS-584/Emory



