
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 1

Chapter 19
  Testing Object-Oriented Applications

Slide Set to accompany  
Software Engineering: A Practitionerʼs Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 2

OO Testing
  To adequately test OO systems, three things

must be done:
  the definition of testing must be broadened to

include error discovery techniques applied to object-
oriented analysis and design models

  the strategy for unit and integration testing must
change significantly, and

  the design of test cases must account for the unique
characteristics of OO software.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 3

ʻTestingʼ OO Models
  The review of OO analysis and design models

is especially useful because the same semantic
constructs (e.g., classes, attributes, operations,
messages) appear at the analysis, design, and
code level

  Therefore, a problem in the definition of class
attributes that is uncovered during analysis
will circumvent side affects that might occur if
the problem were not discovered until design
or code (or even the next iteration of analysis).

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 4

Correctness of OO Models
  During analysis and design, semantic correctness can be

asesssed based on the model’s conformance to the real
world problem domain.

  If the model accurately reflects the real world (to a level
of detail that is appropriate to the stage of development
at which the model is reviewed) then it is semantically
correct.

  To determine whether the model does, in fact, reflect real
world requirements, it should be presented to problem
domain experts who will examine the class definitions
and hierarchy for omissions and ambiguity.

  Class relationships (instance connections) are evaluated
to determine whether they accurately reflect real-world
object connections.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 5

Class Model Consistency
  Revisit the CRC model and the object-relationship

model.
  Inspect the description of each CRC index card to

determine if a delegated responsibility is part of the
collaborator’s definition.

  Invert the connection to ensure that each collaborator
that is asked for service is receiving requests from a
reasonable source.

  Using the inverted connections examined in the
preceding step, determine whether other classes might
be required or whether responsibilities are properly
grouped among the classes.

  Determine whether widely requested responsibilities
might be combined into a single responsibility.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 6

OO Testing Strategies
  Unit testing

  the concept of the unit changes
  the smallest testable unit is the encapsulated class
  a single operation can no longer be tested in isolation (the

conventional view of unit testing) but rather, as part of a
class

  Integration Testing
  Thread-based testing integrates the set of classes required to respond

to one input or event for the system
  Use-based testing begins the construction of the system by testing

those classes (called independent classes) that use very few (if any)
of server classes. After the independent classes are tested, the next
layer of classes, called dependent classes

  Cluster testing [McG94] defines a cluster of collaborating classes
(determined by examining the CRC and object-relationship model)
is exercised by designing test cases that attempt to uncover errors
in the collaborations.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 7

OO Testing Strategies
  Validation Testing

  details of class connections disappear
  draw upon use cases (Chapters 5 and 6) that are part

of the requirements model
  Conventional black-box testing methods (Chapter 18)

can be used to drive validation tests

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 8

OOT Methods

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 9

Testing Methods
  Fault-based testing

  The tester looks for plausible faults (i.e., aspects of the
implementation of the system that may result in defects). To
determine whether these faults exist, test cases are designed to
exercise the design or code.

  Class Testing and the Class Hierarchy
  Inheritance does not obviate the need for thorough testing of all

derived classes. In fact, it can actually complicate the testing
process.

  Scenario-Based Test Design
  Scenario-based testing concentrates on what the user does, not

what the product does. This means capturing the tasks (via use-
cases) that the user has to perform, then applying them and their
variants as tests.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 10

OOT Methods: Random Testing
  Random testing

  identify operations applicable to a class
  define constraints on their use
  identify a minimum test sequence

•  an operation sequence that defines the minimum life
history of the class (object)

  generate a variety of random (but valid) test sequences
•  exercise other (more complex) class instance life

histories

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 11

OOT Methods: Partition Testing
  Partition Testing

  reduces the number of test cases required to test a class in
much the same way as equivalence partitioning for
conventional software

  state-based partitioning
•  categorize and test operations based on their ability to change

the state of a class
  attribute-based partitioning

•  categorize and test operations based on the attributes that they
use

  category-based partitioning
•  categorize and test operations based on the generic function

each performs

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 12

OOT Methods: Inter-Class Testing
  Inter-class testing

  For each client class, use the list of class operators to
generate a series of random test sequences. The
operators will send messages to other server classes.

  For each message that is generated, determine the
collaborator class and the corresponding operator in the
server object.

  For each operator in the server object (that has been
invoked by messages sent from the client object),
determine the messages that it transmits.

  For each of the messages, determine the next level of
operators that are invoked and incorporate these into the
test sequence

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman. 13

OOT Methods: Behavior Testing
empty
acctopen setup Accnt

set up
acct

deposit
(initial)

working
acct

withdrawal
(final)

dead
acct close

nonworking
acct

deposit

withdraw
balance

credit
accntInfo

Figure 14.3 State diagram for Account class (adapted from [KIR94])

