
1
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Chapter 20
  Testing Web Applications

Slide Set to accompany  
Software Engineering: A Practitionerʼs Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

2
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Testing Quality Dimensions-I
  Content is evaluated at both a syntactic and semantic level.

  syntactic level—spelling, punctuation and grammar are
assessed for text-based documents.

  semantic level—correctness (of information presented),
consistency (across the entire content object and related
objects) and lack of ambiguity are all assessed.

  Function is tested for correctness, instability, and general
conformance to appropriate implementation standards
(e.g.,Java or XML language standards).

  Structure is assessed to ensure that it
  properly delivers WebApp content and function
  is extensible
  can be supported as new content or functionality is added.

3
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Testing Quality Dimensions-II
  Usability is tested to ensure that each category of user

  is supported by the interface
  can learn and apply all required navigation syntax and

semantics
  Navigability is tested to ensure that

  all navigation syntax and semantics are exercised to uncover
any navigation errors (e.g., dead links, improper links,
erroneous links).

  Performance is tested under a variety of operating
conditions, configurations, and loading to ensure that
  the system is responsive to user interaction
  the system handles extreme loading without unacceptable

operational degradation

4
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Testing Quality Dimensions-III
  Compatibility is tested by executing the

WebApp in a variety of different host
configurations on both the client and server
sides.
  The intent is to find errors that are specific to a

unique host configuration.
  Interoperability is tested to ensure that the

WebApp properly interfaces with other
applications and/or databases.

  Security is tested by assessing potential
vulnerabilities and attempting to exploit each.
  Any successful penetration attempt is deemed a

security failure.

5
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Errors in a WebApp
  Because many types of WebApp tests uncover problems that are first

evidenced on the client side, you often see a symptom of the error, not the
error itself.

  Because a WebApp is implemented in a number of different configurations
and within different environments, it may be difficult or impossible to
reproduce an error outside the environment in which the error was originally
encountered.

  Although some errors are the result of incorrect design or improper HTML (or
other programming language) coding, many errors can be traced to the
WebApp configuration.

  Because WebApps reside within a client/server architecture, errors can be
difficult to trace across three architectural layers: the client, the server, or the
network itself.

  Some errors are due to the static operating environment (i.e., the specific
configuration in which testing is conducted), while others are attributable to
the dynamic operating environment (i.e., instantaneous resource loading or
time-related errors).

6
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

WebApp Testing Strategy-I
  The content model for the WebApp is reviewed

to uncover errors.
  The interface model is reviewed to ensure that

all use-cases can be accommodated.
  The design model for the WebApp is reviewed

to uncover navigation errors.
  The user interface is tested to uncover errors in

presentation and/or navigation mechanics.
  Selected functional components are unit

tested.

7
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

WebApp Testing Strategy-II
  Navigation throughout the architecture is tested.
  The WebApp is implemented in a variety of different

environmental configurations and is tested for compatibility with
each configuration.

  Security tests are conducted in an attempt to exploit
vulnerabilities in the WebApp or within its environment.

  Performance tests are conducted.
  The WebApp is tested by a controlled and monitored

population of end-users
  the results of their interaction with the system are evaluated for

content and navigation errors, usability concerns, compatibility
concerns, and WebApp reliability and performance.

8
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

The Testing Process

Interface
design

Aesthetic design

Content design

Navigation design

Architecture design

Component design

user

technology

Co ntent
Tes ti ng

I nterface
Tes ti ng

Co mp o nent
Tes ti ng

Navi g ati o n
Tes ti ng

Perfo rm ance
Tes ti ng

Co nfi g urati o n
Tes ti ng

S ecuri ty
Tes ti ng

9
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Content Testing
  Content testing has three important objectives:

  to uncover syntactic errors (e.g., typos, grammar
mistakes) in text-based documents, graphical
representations, and other media

  to uncover semantic errors (i.e., errors in the
accuracy or completeness of information) in any
content object presented as navigation occurs, and

  to find errors in the organization or structure of
content that is presented to the end-user.

10
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Assessing Content Semantics
  Is the information factually accurate?
  Is the information concise and to the point?
  Is the layout of the content object easy for the user to understand?
  Can information embedded within a content object be found easily?
  Have proper references been provided for all information derived from

other sources?
  Is the information presented consistent internally and consistent with

information presented in other content objects?
  Is the content offensive, misleading, or does it open the door to

litigation?
  Does the content infringe on existing copyrights or trademarks?
  Does the content contain internal links that supplement existing

content? Are the links correct?
  Does the aesthetic style of the content conflict with the aesthetic style

of the interface?

11
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Database Testing
client layer - user interface

server layer - WebApp

server layer - data transformation

database layer - data access

server layer - data management

database

HTML scripts

user data SQL

user data

SQLraw data

12
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

User Interface Testing
  Interface features are tested to ensure that design rules,

aesthetics, and related visual content is available for the
user without error.

  Individual interface mechanisms are tested in a manner
that is analogous to unit testing.

  Each interface mechanism is tested within the context of a
use-case or NSU for a specific user category.

  The complete interface is tested against selected use-
cases and NSUs to uncover errors in the semantics of the
interface.

  The interface is tested within a variety of environments
(e.g., browsers) to ensure that it will be compatible.

13
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Testing Interface Mechanisms-I
  Links—navigation mechanisms that link the user to some other

content object or function.
  Forms—a structured document containing blank fields that are

filled in by the user. The data contained in the fields are used
as input to one or more WebApp functions.

  Client-side scripting—a list of programmed commands in a
scripting language (e.g., Javascript) that handle information
input via forms or other user interactions

  Dynamic HTML—leads to content objects that are manipulated
on the client side using scripting or cascading style sheets
(CSS).

  Client-side pop-up windows—small windows that pop-up
without user interaction. These windows can be content-
oriented and may require some form of user interaction.

14
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Testing Interface Mechanisms-II
  CGI scripts—a common gateway interface (CGI) script implements a

standard method that allows a Web server to interact dynamically with
users (e.g., a WebApp that contains forms may use a CGI script to
process the data contained in the form once it is submitted by the
user).

  Streaming content—rather than waiting for a request from the client-
side, content objects are downloaded automatically from the server
side. This approach is sometimes called “push” technology because
the server pushes data to the client.

  Cookies—a block of data sent by the server and stored by a browser
as a consequence of a specific user interaction. The content of the
data is WebApp-specific (e.g., user identification data or a list of items
that have been selected for purchase by the user).

  Application specific interface mechanisms—include one or more
“macro” interface mechanisms such as a shopping cart, credit card
processing, or a shipping cost calculator.

15
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Usability Tests
  Design by WebE team … executed by end-users
  Testing sequence …

  Define a set of usability testing categories and identify goals
for each.

  Design tests that will enable each goal to be evaluated.
  Select participants who will conduct the tests.
  Instrument participantsʼ interaction with the WebApp while

testing is conducted.
  Develop a mechanism for assessing the usability of the

WebApp
  different levels of abstraction:

  the usability of a specific interface mechanism (e.g., a form)
can be assessed

  the usability of a complete Web page (encompassing
interface mechanisms, data objects and related functions)
can be evaluated

  the usability of the complete WebApp can be considered.

16
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Compatibility Testing
  Compatibility testing is to define a set of “commonly encountered”

client side computing configurations and their variants
  Create a tree structure identifying

  each computing platform
  typical display devices
  the operating systems supported on the platform
  the browsers available
  likely Internet connection speeds
  similar information.

  Derive a series of compatibility validation tests
  derived from existing interface tests, navigation tests, performance tests,

and security tests.
  intent of these tests is to uncover errors or execution problems that can be

traced to configuration differences.

17
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Component-Level Testing
  Focuses on a set of tests that attempt to

uncover errors in WebApp functions
  Conventional black-box and white-box test

case design methods can be used
  Database testing is often an integral part of the

component-testing regime

18
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Navigation Testing
  The following navigation mechanisms should be tested:

  Navigation links—these mechanisms include internal links
within the WebApp, external links to other WebApps, and
anchors within a specific Web page.

  Redirects—these links come into play when a user requests a
non-existent URL or selects a link whose destination has been
removed or whose name has changed.

  Bookmarks—although bookmarks are a browser function, the
WebApp should be tested to ensure that a meaningful page title
can be extracted as the bookmark is created.

  Frames and framesets—tested for correct content, proper
layout and sizing, download performance, and browser
compatibility

  Site maps—Each site map entry should be tested to ensure that
the link takes the user to the proper content or functionality.

  Internal search engines—Search engine testing validates the
accuracy and completeness of the search, the error-handling
properties of the search engine, and advanced search features

19
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Testing Navigation Semantics-I
  Is the NSU achieved in its entirety without error?
  Is every navigation node (defined for a NSU) reachable within the

context of the navigation paths defined for the NSU?
  If the NSU can be achieved using more than one navigation path, has

every relevant path been tested?
  If guidance is provided by the user interface to assist in navigation, are

directions correct and understandable as navigation proceeds?
  Is there a mechanism (other than the browser ʻbackʼ arrow) for

returning to the preceding navigation node and to the beginning of the
navigation path.

  Do mechanisms for navigation within a large navigation node (i.e., a
long web page) work properly?

  If a function is to be executed at a node and the user chooses not to
provide input, can the remainder of the NSU be completed?

20
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Testing Navigation Semantics-II
  If a function is executed at a node and an error in function

processing occurs, can the NSU be completed?
  Is there a way to discontinue the navigation before all nodes

have been reached, but then return to where the navigation
was discontinued and proceed from there?

  Is every node reachable from the site map? Are node names
meaningful to end-users?

  If a node within an NSU is reached from some external source,
is it possible to process to the next node on the navigation
path. Is it possible to return to the previous node on the
navigation path?

  Does the user understand his location within the content
architecture as the NSU is executed?

21
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Configuration Testing
  Server-side

  Is the WebApp fully compatible with the server OS?
  Are system files, directories, and related system data created

correctly when the WebApp is operational?
  Do system security measures (e.g., firewalls or encryption) allow

the WebApp to execute and service users without interference or
performance degradation?

  Has the WebApp been tested with the distributed server
configuration (if one exists) that has been chosen?

  Is the WebApp properly integrated with database software? Is the
WebApp sensitive to different versions of database software?

  Do server-side WebApp scripts execute properly?
  Have system administrator errors been examined for their affect

on WebApp operations?
  If proxy servers are used, have differences in their configuration

been addressed with on-site testing?

22
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Configuration Testing
  Client-side

  Hardware—CPU, memory, storage and printing devices
  Operating systems—Linux, Macintosh OS, Microsoft

Windows, a mobile-based OS
  Browser software—Internet Explorer, Mozilla/Netscape,

Opera, Safari, and others
  User interface components—Active X, Java applets and

others
  Plug-ins—QuickTime, RealPlayer, and many others
  Connectivity—cable, DSL, regular modem, T1

  The number of configuration variables must be reduced
to a manageable number

23
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Security Testing
  Designed to probe vulnerabilities of the client-

side environment, the network communications
that occur as data are passed from client to
server and back again, and the server-side
environment

  On the client-side, vulnerabilities can often be
traced to pre-existing bugs in browsers, e-mail
programs, or communication software.

  On the server-side, vulnerabilities include
denial-of-service attacks and malicious scripts
that can be passed along to the client-side or
used to disable server operations

24
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Performance Testing
  Does the server response time degrade to a point where it is

noticeable and unacceptable?
  At what point (in terms of users, transactions or data loading)

does performance become unacceptable?
  What system components are responsible for performance

degradation?
  What is the average response time for users under a variety of

loading conditions?
  Does performance degradation have an impact on system

security?
  Is WebApp reliability or accuracy affected as the load on the

system grows?
  What happens when loads that are greater than maximum

server capacity are applied?

25
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Load Testing
  The intent is to determine how the WebApp

and its server-side environment will respond to
various loading conditions
  N, the number of concurrent users
  T, the number of on-line transactions per unit of time
  D, the data load processed by the server per

transaction
  Overall throughput, P, is computed in the

following manner:
•  P = N x T x D

26
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Stress Testing
  Does the system degrade ʻgentlyʼ or does the server shut down as

capacity is exceeded?
  Does server software generate “server not available” messages? More

generally, are users aware that they cannot reach the server?
  Does the server queue requests for resources and empty the queue

once capacity demands diminish?
  Are transactions lost as capacity is exceeded?
  Is data integrity affected as capacity is exceeded?
  What values of N, T, and D force the server environment to fail? How

does failure manifest itself? Are automated notifications sent to
technical support staff at the server site?

  If the system does fail, how long will it take to come back on-line?
  Are certain WebApp functions (e.g., compute intensive functionality,

data streaming capabilities) discontinued as capacity reaches the 80 or
90 percent level?

