
1
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Chapter 31
  Emerging Trends in Software Engineering

Slide Set to accompany  
Software Engineering: A Practitionerʼs Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction with
Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is prohibited
without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student use.

2
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Trends
  Challenges we face when trying to isolate meaningful

technology trends:
  What Factors Determine the Success of a Trend?

  What Lifecycle Does a Trend Follow?

  How Early Can a Successful Trend be Identified?

  What Aspects of Evolution are Controllable?

  Ray Kurzweil [Kur06] argues that technological evolution is
similar to biological evolution, but occurs at a rate that is
orders of magnitude faster.
  Evolution (whether biological or technological) occurs as a result

of positive feedback—“the more capable methods resulting from
one stage of evolutionary progress are used to create the next
stage.” [Kur06]

3
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Technology Innovation Lifecycle

4
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Observing SE Trends
  Barry Boehm [Boe08] suggests that “software

engineers [will] face the often formidable
challenges of dealing with rapid change, uncertainty
and emergence, dependability, diversity, and
interdependence, but they also have opportunities to
make significant contributions that will make a
difference for the better.”

  But what of more modest, short-term innovations,
tools, and methods?

5
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

The Hype Cycle
  technology trigger—a research breakthrough or launch of an

innovative new product that leads to media coverage and public
enthusiasm

  peak of inflated expectations—over-enthusiasm and overly optimistic
projections of impact based on limited, but well-publicized successes

  disillusionment— overly optimistic projections of impact are not met
and critics begin the drumbeat; the technology becomes
unfashionable among the cognoscenti

  slope of enlightenment—growing usage by a wide variety of
companies leads to a better understanding of the technology’s true
potential; off the shelf methods and tools emerge to support the
technology

  plateau of productivity—real world benefits are now obvious and
usage penetrates a significant percentage of the potential market

Gartner Group [Gar08]

6
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

The Hype Cycle

7
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Soft Trends
  Connectivity and collaboration (enabled by high bandwidth communication)

has already led to a software teams that do not occupy the same physical space
(telecommuting and part-time employment in a local context).

  Globalization leads to a diverse workforce (in terms of language, culture,
problem resolution, management philosophy, communication priorities, and
person-to-person interaction).

  An aging population implies that many experienced software engineers and
managers will be leaving the field over the coming decade. The software
engineering community must respond with viable mechanisms that capture the
knowledge of these aging managers and technologists

  Consumer spending in emerging economies will double to well over $9
trillion. [Pet06] There is little doubt that a non-trivial percentage of this
spending will be applied to products and services that have a digital
component—that are software-based or software-driven.

8
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Managing Complexity
  In the relatively near future, systems requiring over 1 billion

LOC will begin to emerge

  Consider the interfaces for a billion LOC system
•  both to the outside world
•  to other interoperable systems
•  to the Internet (or its successor), and
•  to the millions of internal components that must all work together to

make this computing monster operate successfully.
  Is there a reliable way to ensure that all of these connections will allow

information to flow properly?
  Consider the project itself.
  Consider the number of people (and their locations) who will be doing

the work
  Consider the engineering challenge.
  Consider the challenge of quality assurance.

9
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Open-World Software
  Concepts such as ambient intelligence, context-

aware applications, and pervasive/ubiquitous
computing—all focus on integrating software-based
systems into an environment far broader than
anything to date

  “open-world software”—software that is designed
to adapt to a continually changing environment ‘by
self-organizing its structure and self-adapting its
behavior.” [Bar06]

10
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Emergent Requirements
  As systems become more complex, requirements will emerge

as everyone involved in the engineering and construction of a
complex system learns more about it, the environment in
which it is to reside, and the users who will interact with it.

  This reality implies a number of software engineering trends.
  process models must be designed to embrace change and adopt

the basic tenets of the agile philosophy (Chapter 3).
  methods that yield engineering models (e.g., requirements and

design models) must be used judiciously because those models
will change repeatedly as more knowledge about the system is
acquired

  tools that support both process and methods must make
adaptation and change easy.

11
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Software Building Blocks
  the software engineering community attempts to

capture past knowledge and reuse proven solutions,
but a significant percentage of the software that is
built today continues to be built “from scratch.”
  Part of the reason for this is a continuing desire (by

stakeholders and software engineering practitioners) for
“unique solutions.”

  “merchant software”—software building blocks
designed specifically for a unique application
domain (e.g., VoIP devices).

12
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Open Source
  “Open source is a development method for software that

harnesses the power of distributed peer review and
transparency of process. The promise of open source is better
quality, higher reliability, more flexibility, lower cost, and an
end to predatory vendor lock-in.” [OSO08]

  The term open source when applied to computer software,
implies that software engineering work products (models,
source code, test suites) are open to the public and can be
reviewed and extended (with controls) by anyone with interest
and permission.

13
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Process Trends
  As SPI frameworks evolve, they will emphasize “strategies that focus

on goal orientation and product innovation.” [Con02]
  Because software engineers have a good sense of where the process

is weak, process changes should generally be driven by their needs
and should start form the bottom up.

  Automated software process technology (SPT) will move away from
global process management (broad-based support of the entire
software process) to focus on those aspects of the software process
that can best benefit from automation.

  Greater emphasis will be placed on the return-on-investment of SPI
activities.

  As time passes, the software community may come to understand that
expertise in sociology and anthropology may have as much of more
to do with successful SPI as other, more technical disciplines.

  New modes of learning may facilitate the transition to a more
effective software process.

14
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

The Grand Challenge
  There is one trend that is undeniable—software-based systems

will undoubtedly become bigger and more complex as time
passes.

  It is the engineering of these large, complex systems,
regardless of delivery platform or application domain, the
poses the “grand challenge” [Bro06] for software engineers.

  Key approaches:
  more effective distributed and collaborative software engineering

philosophy
  better requirements engineering approaches
  a more robust approach to model-driven development, and
  better software tools

15
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Collaborative Development
  Today, software engineers collaborate across time

zones and international boundaries, and every one
of them must share information.

  The challenge over the next decade is to develop
methods and tools that facilitate that collaboration.

  Critical success factors:
  Shared goals
  Shared culture
  Shared process
  Shared responsibility

16
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Requirements Engineering
  To improve the manner in which requirements are

defined, the software engineering community will
likely implement three distinct sub-processes as RE
is conducted [Gli07]:
  improved knowledge acquisition and knowledge sharing

that allows more complete understanding of application
domain constraints and stakeholder needs

  greater emphasis on iteration as requirements are defined
  more effective communication and coordination tools that

enable all stakeholders to collaborate effectively.

17
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Model-Driven Development
  couples domain-specific modeling languages with

transformation engines and generators in a way that facilitates
the representation of abstraction at high levels and then
transforms it into lower levels [Sch06]

  Domain-specific modeling languages (DSMLs)
  represent “application structure, behavior and

requirements within particular application domains”
  described with metamodels that “define the relationships

among concepts in the domain and precisely specify the
key semantics and constraints associated with these
domain concepts.” [Sch06]

18
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Test-Driven Development
  In test-driven development (TDD), requirements for a software component

serve as the basis for the creation of a series of test cases that exercise the
interface and attempt to find errors in the data structures and functionality
delivered by the component.

  TDD is not really a new technology but rather a trend that emphasizes the
design of test cases before the creation of source code.continue to emphasize
the importance of software architecture

19
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Tools Trends—SEE

